The beneficial effect of silicon (Si) in increasing salt stress tolerance has been observed in many plants, including the cereal crops rice, wheat, and barley. In this experiment, we examined the effect of Si on the survival and growth of torenia (Torenia fournieri L inden ex F oum) ‘ Duchess Blue and White’ cultured in vitro in the presence and absence of salt stress. Previous reports had suggested that torenia exhibited low salt tolerance. Shoot buds isolated from 16-day-old seedlings were cultured on Murashige and Skoog (MS) medium containing 0, 50, or 100 mM NaCl alone or in combination with 1.8 or 3.6 mM Si supplied as K2SiO3. Plant survival rate was significantly reduced by NaCl supplementation compared with the control. The survival rate significantly increased to 100% when 1.8 or 3.6 mM Si was added to the MS medium containing 50 mM NaCl. However, only 31% of plantlets survived when 1.8 mM Si was added to the culture medium containing 100 mM NaCl. Shoot and root lengths significantly decreased with increasing NaCl concentration in the culture medium, whereas addition of NaCl to the MS medium also significantly reduced fresh and dry weights. However, Si supplementation significantly increased fresh and dry weights under 50 mM NaCl, compared with the control. The greatest fresh and dry weights were recorded when shoot buds were cultured on MS medium containing 50 mM NaCl and 3.6 mM Si. The activities of the antioxidant-scavenging enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), but not peroxidase (POD), were markedly higher in the presence of 50 mM NaCl than the activity of the control. When Si was added to the medium containing 50 mM NaCl, activities of SOD, POD, APX, and CAT decreased as compared with the 50 mM NaCl treatment. Thus, Si-mediated tolerance to NaCl stress was not due to increased activity of antioxidant enzymes. Although Si was not effective in increasing tolerance to high salt concentrations, such as 100 mM NaCl, the results suggested that Si supplementation could effectively enhance tolerance to 50 mM NaCl stress.
환경 스트레스에 의해 야기되는 활성 산소종에 의한 피해에 내성을 가지는 식물의 개발을 위하여 딸기 유래의 cytosolic ascorbate peroxidase 유전자(ApxSC7)를 Agrobacterium tume-faciens LBA4404를 매개로 형질전환 시켰다. Hygromycin으로 선발된 캘러스로부터 재분화 된 식물체는 야생형과 비교하여 형태적으로 차이를 나타내지 않았다. PCR 및 Southern blot 분석을 통하여 형질전환 식물체의
A cytosolic ascorbate peroxidase, hydrogen peroxide-scavenging enzyme, was characterized from Codonopsis lanceolata. The cytosolic ascorbate peroxidase cDNA (CAPX) was 983 nucleotides long and possess an open reading frame of 753 bp with 251 amino acids (MW 27.9 kDa) with pI 5.61. The deduced amino acid sequence of CAPX shows high homology to other known cytosolic APXs (78~83%), but the CAPX was clustered independently from compared ten plant APXs. The CAPX gene was highly expressed in leaf and stem tissues, but not in root. When Codonopsis leaves cut using scalpel were soaked in 1 mM hydorgen peroxide, the expression of CAPX gene was suppressed.
Ascorbate peroxidase (APX) plays a crucial role in the detoxification of hydrogen peroxide. APX activity is maintained significantly higher in the paraquattreated leaves of the paraquat-tolerant Rehmannia glutinos. This study was conducted to understand structural and regulatory characteristics of APX gene in R. glutinosa. A putative APX cDNA clone (RgAPX1) was isolated from a leaf cDNA library using a partially sequenced expressed sequence tag clone. RgAPX1 is consisted of 1148 bp nucleotides and contains an open reading frame encoding a 250 amino acid-long polypeptide. Deduced RgAPX1 amino acid sequence shares higher sequence similarity to cytosolic APXs. RgAPX1. expression was higher in the leaf than in the flower and root. Southern blot result indicates the presence of one or two RgAPX1-related genes in R. glutinosa genome. RgAPX1 transcription was affected differentially by various stresses and phytohormone. The results indicate that RgAPXl is constitutively expressed in most tissues and its expression is modulated for the immediate and efficient detoxification of H2O2 under normal and stress conditions.
To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.