본 연구는 다목적함수를 고려한 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 Python으로 개발하고, Soil and Water Assessment Tool (SWAT) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하였다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역(364.8 km2)을 대상으로 하였으며, 공도 지점의 2000년부터 2015년까지의 일 유량 자료를 이용하였다. PSO 자동보정은 결정계수 (coefficient of determination, R2), 평균제곱근오차(RMSE), NSE 모형효율계수(Nash-Sutcliffe Efficiency, NSEQ), 특히 중간유출과 기저유출의 보정을 위해 NSEINQ (Inverse Q)를 활용하여 SWAT을 보정하였다. PSO을 통한 SWAT 모형의 자동보정과 수동보정의 유출해석 결과, 각각 R2 는 0.64, 0.55, RMSE는 0.59, 0.58, NSEQ는 0.78, 0.75, NSEINQ는 0.45, 0.09의 상관성 분석결과를 보였다. PSO 자동보정 알고리즘은 수동보정에 비하여 높은 향상을 보였는데 특히 유출의 감수곡선을 개선시켰으며 적절한 매개변수 추가(RCHRG_DP)와 매개변수 범위의 설정으로 수동 보정의 한계를 보완하였다.
Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.