검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.04 구독 인증기관·개인회원 무료
        Acetylcholinesterase (AChE) is a key enzyme that terminates impulse transmission by rapidly hydrolyzing the neurotransmitter acetylcholine at cholinergic synapses. Previous studies have discovered a transiently opening channel referred to as the “back door” in Torpedo californica AChE. Previously, we observed that substituting the Tyr391 residue with a Phe residue significantly decreased the catalytic efficiency of recombinant Apis mellifera AChE1 (AmAChE1), while the reverse substitution restored it. Interestingly, substitution of the Tyr391 residue with a Phe residue in AmAChE1 disrupted the formation of the backdoor, while the reverse substitution restored it. This finding suggests that the Tyr-to-Phe substitution impairs backdoor formation, thereby leading to a significant reduction in the catalytic activity of AmAChE1. This serves as one of the driving forces for the functional transition from AmAChE1 to AmAChE2. In this experiment, we also confirmed the gradual restoration and increase in AChE activity by substituting Phe391 in AmAChE1 with Ser, Trp, Thr, Ile, Asn, and Tyr residues through kinetic assay and molecular dynamics simulation.