정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 실제 영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 오이의 특징형상 검출은 15×15 간격으로 자동검출 되도록 처리하였다. 오이로 인식된 출력패턴 중에서 오검출된 출력패턴의 비율은 0.1~4.2%로 나타났다. 오류역전파 알고리즘은 영상크기를 445×363, 501×391, 300×421, 450×271, 297×421의 크기에 따라 출력패턴을 얻은 결과 영상의 크기에 따른 검출 값의 변화는 없는 것으로 나타났다. 학습패턴 수가 25개로 증가하면 영상에서 다른 패턴을 검출하는 비율이 16.02%로 나타났다. 또한 학습패턴이 2개인 경우 40개의 영상에서 8개의 오이를 검출하지 못하였다. 학습패턴의 수가 7~9개인 경우 오이의 검출이 가장 좋은 것으로 나타났다.
FRP 판은 외부 부착된 보강 판의 효과적인 부착강도의 증진으로 실질적으로 부착강도에 대한 많은 연구가 수행되어왔다. 선행연구자들은 이러한 부착강도를 알아보기 위하여 다양한 변수를 설정하여 실험을 통하여 FRP 판의 부착강도를 규명하였다. 그러나, 이러한 부착강도를 알아보기 위한 실험은 장비구축의 비용과 시간 소비가 많이 되고 수행하기 어렵기 때문에 국한적으로 수행되고 있다. 본 연구는 선행연구자들의 부착실험 데이터를 다양한 신경망 모형과 알고리즘을 적용하여 최적의 인공신경망 모형을 개발하는데 그 목적이 있다. 인공신경망 모형의 출력층은 부착강도, 입력층은 FRP 판의 두께, 폭, 부착 길이, 탄성계수, 인장강도와 콘크리트의 압축강도, 인장강도, 폭을 변수로 선정하여 학습을 수행하였다. 개발된 인공신경망 모형은 역전파 학습 알고리즘을 적용하였으며, 오차는 0.001범위에 수렴되도록 학습을 하였다. 또한, 일반화 과정은 Bayesian 기법을 도입함으로써 보다 일반화된 방법으로 과대적합의 문제를 해소하였다. 개발된 모형의 검증은 학습에 이용되지 않은 다른 선행연구자들의 부착강도 결과 값과 비교함으로서 실시하였다.