검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS’s properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.
        4,000원
        2.
        2022.05 구독 인증기관·개인회원 무료
        Water electrolysis is a representative technology for tritium enrichment in water. Proton exchange membrane (PEM) water electrolysis has received great attention to replace traditional alkaline water electrolysis which generates concentrated tritiated water containing a large amount of salts. Nafion has been widely used as a polymeric electrolyte for the PEM electrolyzer. However, its low gas barrier property causes explosion, corrosion or degradation of electrolyzer. Furthermore, the traditional polymeric electrolytes have negligible differences in conductivity between hydrogen isotopes. To enhance the tritium separation by water electrolysis, we designed a composite membrane (Nafion/ hexagonal boron nitride (hBN)). The monolayer hBN has a high proton conductivity and gas barrier property, and the hBN can enhance conductivity differences between hydrogen isotopes. We prepared Nafion/hBN composite membranes, and water electrolysis performances and proton/deuterium separation behaviors were investigated.