본 연구는 통계적 속성에 기반한 질감특징값 분석을 바탕으로 뇌 전산화단층촬영 영상에서 정상과 뇌경색의 컴퓨터보조진단의 적용 가능성을 알아보고자 하였다. 실험은 질감특징값을 나타내는 6개의 파라미터를 이용한 질환인식률 평가와 ROC curve를 분석하였다. 그 결과 평균밝기 88%, 대조도 92%, 평탄도 94%, 균일도 88%, 엔트로피 84%의 높은 질환인식률을 나타내었다. 하지만 왜곡도의 경우 58%로 다소 낮은 질환 인식률을 나타내었다. ROC curve를 이용한 분석에서 각 파라미터의 곡선아래면적이 0.886(p=0.0001)이상을 나타내어 질환인식에 의미가 있는 결과로 나타났다. 또한 각 파라미터의 cut-off값 결정으로 컴퓨터보조진단을 통한 질환예측이 가능할 것으로 판단된다.
본 연구에서 제안된 질감특징분석 알고리즘은 뇌출혈환자의 CT영상을 이용하여 정상영상과 질환영상으로 구분하여, 고유영상 및 실험영상을 생성하고 제안된 컴퓨터보조진단 시스템에 적용하여 6개의 파라메타로 정량적 분석을 통해 뇌출혈 CT영상의 인식률을 도출하고 평가하였다. 결과로 뇌출혈 CT영상 40증례 중에서 각각의 질감 특징값에 대한 인식률은 평균밝기의 경우 100%, 평균대조도의 경우 100%, 평탄도의 경우 100%, 왜곡도의 경우 100%로 높게 나타났고, 균일도의 경우 95%, 엔트로피의 경우 87.5%로 다소 낮은 질환 인식률을 보였다. 따라서 본 연구의 결과를 바탕으로 의료영상의 컴퓨터보조진단 시스템으로 발전된 프로그램을 구현한다면 뇌출혈 CT영상의 질환부위 자동검출 및 정량적 진단이 가능해 컴퓨터보조진단 자료로서 활용이 가능할 것으로 판단되며 최종판독에서 정확성과 판독시간 단축에 유용하게 사용 될 것으로 사료된다.