This paper proposes a building recognition algorithm using watershed image segmentation algorithm and integrated region matching (IRM). To recognize a building, a preprocessing algorithm which is using Gaussian filter to remove noise and using canny edge extraction algorithm to extract edges is applied to input building image. First, images are segmented by watershed algorithm. Next, a region adjacency graph (RAG) based on the information of segmented regions is created. And then similar and small regions are merged. Second, a color distribution feature of each region is extracted. Finally, similar building images are obtained and ranked. The building recognition algorithm was evaluated by experiment. It is verified that the result from the proposed method is superior to color histogram matching based results.
Representing an environment as the probabilistic grids is effective to sense outlines of the environment in the mobile robot area. Outlines of an environment can be expressed factually by using the probabilistic grids especially if sonar sensors would be supposed to build an environment map. However, the difficult problem of a sonar such as a specular reflection phenomenon should be overcome to build a grid map through sonar observations. In this paper, the NRF(Neighborhood Recognition Factor) was developed for building a grid map in which the specular reflection effect is minimized. Also the reproduction rate of the gird map built by using NRF was analyzed with respect to a true map. The experiment was conducted in a home environment to verify the proposed technique.