Preparation of activated carbon from biomass residue with conventional steam activation was conducted to find the alternative raw materials for meeting the high demand for low-cost porous material in the desiccant application. In this study, activated carbons were produced from dead camphor leaves using two-step methods at different preparation temperatures. The characterization results revealed that the prepared activated carbons have a surface area of 700 m2/g, with 75% of microporosity. The water vapor sorption study reported that the water uptake of camphor leaf-based activated carbons was strongly affected by the pore properties of the materials. Moreover, from the water adsorption kinetics, it was observed that the rate constant of adsorption was varied at each relative pressure, which can be assumed that the water adsorption mechanism is different at each relative pressure. From these results, it was revealed that the prepared camphor leaf-based activated carbons have a promising ability to adsorb water vapor from humid air.
Sustainable biomass-derived porous carbons demonstrate excellent capacitive properties owing to their heteroatom-rich nature and distinct textural feature. Herein, a series of nitrogen-/phosphorus-/oxygen-containing microporous carbons (CWWN/ P/O-MPCs) have been successfully fabricated by etching in H2O2 solution, pre-treatment of camphor wood wastes with KOH solution and subsequent carbonization. As an electrode material for supercapacitors, the typical microporous carbon (CWW-N/P/O-MPCs-0.5) exhibits a remarkably high specific capacitance of 245 F g− 1 at 0.5 A g− 1, corresponding to an impressively large volumetric capacitance of 208 F m− 3, and excellent long-term stability over 10,000 cycles. The excellent electrochemical performance can be ascribed to the optimal combination of heteroatom groups and ultrafine micropores.
The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure ofporous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compo-sitions are frozen into a mold at -25oC. Pores are generated by sublimation of the vehicles at room temperature. Afterhydrogen reduction at 300oC and sintering at 850oC for 1 h, the green body of CuO-NiO is completely converted toporous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to thesublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to thedegree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphologyare observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plateshape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals dur-ing solidification of camphor-naphthalene alloys.
The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some sp-sp 2 linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.