검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized through chemical oxidation polymerization by changing the weight ratio of aniline mono-mers. To examine the morphological structure of the composites, scanning electron micros-copy and transmission electron microscopy (TEM) were conducted. TEM results revealed that fibril-likePANI with a diameter of 50 nm was homogeneously coated on the surface of the GNS. The electrochemical properties of the composites were studied by cyclic voltam-metry in 1 M H2SO4 electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% aniline content) showed the highest specificcapacitance, 528 Fg-1, at 10 mVs-1. The im-proved performance was attributed to the GNS, which provides a large number of active sites and good electrical conductivity. The resulting composites are promising electrode materials for high capacitative supercapacitors.
        3,000원
        3.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, cobalt oxide (Co3O4)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, 400℃). The nanostructured Co3O4/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The Co3O4/graphene sample obtained at 200℃ showed the highest capacitance of 396 Fg-1 at 5 mVs-1. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing Co3O4/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at 200℃ revealed that nanoscale Co3O4 (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of Co3O4.
        3,000원