Nowadays, variable materials have been investigated to find alternative lightweight conductors instead of copper because copper has a relatively high density. Carbon nanotube (CNT) is one of the most suitable materials as an alternative conductor to Cu, thanks to its high conductivity. In addition, CNT has many other great properties, such as low density, high strength, and high ampacity. However, individual CNT loses some of its performance after the assembly process. Therefore, CNT materials have been electroplated with copper to achieve lighter conductors. In this study, CNT buckypaper (CNTBP) is fabricated using a multi-walled carbon nanotube and copper electroplated using optimizing electrolyte with the help of additive chemicals such as accelerator and suppressor. Furthermore, the effect of hydrochloric acid in the electrolyte on the electroplating of CNTBP is observed. The results show that HCl in electrolyte enhances the effectiveness of additive chemicals and provide a well-plated CNTBP@Cu composite. The composite in this study is expected to be used in various areas.
The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500°C for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 oC for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20% apparent porosity and 96.9% relative density.
A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.
Carbonate-type organic electrolytes were prepared using propylene carbonate (PC) and dimethyl carbonate (DMC) as a solvent, quaternary ammonium salts, and by adding different contents of 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMImBF4). Cyclic voltammetry and linear sweep voltammetry were performed to analyze conducting behaviors. The surface characterizations were analyzed by scanning electron microscopy method and X-ray photoelectron spectroscopy. From the experimental results, increasing the EMImBF4 content increased the ionic conductivity and reduced bulk resistance and interfacial resistance. In particular, after adding 15 vol% EMImBF4 in 0.2 M SBPBF4 PC/DMC electrolyte, the organic electrolyte showed superior capacitance and interfacial resistance. However, when EMImBF4 content exceeded 15 vol%, the capacitance was saturated and the voltage range decreased.
본 연구에서는, 유기용매를 사용하지 않는 친 환경적인 건식 공정과 초임계 공정을 이용한 Thin-multiwalled carbon nanotube (TWNTs)/아민계 에폭시 첨가제의 복합체 제조에 관하여 연구를 하였다. 제조된 TWNTs/아민계 에폭시 첨가제의 복합체는 우레탄기반의 비스페놀 A 타입의 에폭시 레 진의 경화제로 사용하였다. TWNTs/아민계 에폭시 첨가제의 복합체를 경화제로 사용하여 제조된 에폭 시 레진의 열적 성질을 Dynamic mechanical analysis (DMA)를 이용하여 분석 하였으며, 메트릭스상의 carbon nanotube 의 높은 분산성은 SEM을 통하여 확인 하였다. 그 결과, 초임계 공정을 이용하여 제 조된 에폭시 레진의 열적 성질과 매트릭스내의 carbon nanotube 분산성이 건식 공정을 사용 하였을 때 보다 더욱 증가된 결과를 확인 할 수 있었다
폐시멘트, 폐콘크리트, 제강 슬래그, 폐수 등을 포함하여 다양한 폐기물들이 여러 산업으로부터 배출되고 있다. 그런데 이러한 폐기물들은 Mg2+ 이온, Ca2+ 이온을 다량 포함하고 있다고 알려져 있다. 폐기물 처리 시 이러한 금속 이온을 활용한다면 MgCO3, CaCO3 등 다른 유용한 물질로 전환시킬 수 있다. 이를 위해 지구온난화를 일으키는 주요 원인으로 알려진 이산화탄소를 사용할 수 있고, 이는 이산화탄소 저감 및 폐기물 처리를 동시에 해결할 수 있을 것으로 보인다. 본 연구에서는 CO2의 용이한 전달을 돕기 위한 습식 흡수제에 대해 제안하고 Henry constant, Diffusivity, 총괄반응속도상수(kov)를 측정하였다. 흡수제는 7 wt% 암모니아, 3 wt% ʟ-Arginine, 1 wt% 부식방지제(Imidazole과 1,2,3-Benzotriazole)를 물에 녹여 제조하였다. 암모니아는 기존에 습식흡수제로 사용되던 MEA보다 저렴한 가격을 가지고 있으며 CO2 흡수 능력 또한 우수하다고 알려져 있다. 최근 아미노산은 우수한 CO2 흡수능력과 친환경적인 특성으로 많은 연구가 진행되고 있으며 두 종류의 부식방지제는 암모니아에 의해 발생할 수 있는 플랜트 장비의 부식을 방지하기 위해 첨가되었다. 303.15 K에서 333.15 K의 온도에서 실험이 진행되었으며 실험 결과와 CO2/N2O analogy를 이용해 각 값을 계산하였다.