검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanomaterials (CNMs) have been the subject of extensive research for their potential applications in various fields, including photovoltaics and medicine. In recent years, researchers have focused their attention on CNMs as their high electrical conductivity, low cost, and large surface area are promising in replacing traditional platinum-based counter electrodes in dye-sensitized solar cells (DSSC). In addition to their electrical properties, CNMs have also displayed antibacterial activity, making them an attractive option for medical applications. The combination of CNMs with metal oxides to form composite materials represents a promising approach with significant potential in various fields, including energy and biology. Here, we introduce porous carbon nanospheres (PCNS) derived from Cocos nucifera L. and its ZnO composite (PCNS/ZnO) as an alternative material, which opens up new research insights for platinum-free counter electrodes. Bifacial DSSCs produced using PCNS-based counter electrodes achieved power conversion efficiencies (PCE) of 3.98% and 2.02% for front and rear illumination, respectively. However, with PCNS/ZnO composite-based counter electrodes, the efficiency of the device increased significantly, producing approximately 5.18% and 4.26% for front and rear illumination, respectively. Moreover, these CNMs have shown potential as antibacterial agents. Compared to PCNS, PCNS/ZnO composites exhibited slightly superior antibacterial activity against tested bacterial strains, including gram-positive Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus), and gram-negative Vibrio harveyi (V. harveyi) and Escherichia coli (E. coli) with MIC values of 125, 250, 125, and 62.5 μg/ml, respectively. It is plausible that the outcomes observed were influenced by the synergistic effects of the composite material.
        4,500원
        3.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
        4,000원