In this study, a manganese catalyst on the surface of a ceramic support was developed for the removal of odor emitted from barbecuing restaurants. Its ozone oxidation at room temperature was tested using acetaldehyde (CH3CHO), the most dominant compound in the barbecuing odor, and the ozonation efficiency under wet conditions was also studied. The manganese catalyst was made with the honeycomb-type ceramic support, and an acid pretreatment was applied to increase its specific surface area, resulting in an increase of the degree of dispersion of manganese oxide. The acetaldehyde removal efficiency using the manganese catalyst on the acidpretreated support (Mn/APS) increased by 49%, and the ozone decomposition rate and the CO2 conversion rate also increased by 41% and 27%, respectively. The catalyst without surface pretreatment (Mn/S) showed a low efficiency for the acetaldehyde ozonation, and other organic compounds such as acetic acid (CH3COOH) and nonanal (CH3(CH3)7CHO) were found as oxidation by-products. In comparison, CO2 was the most dominant product by the ozonation of acetaldehyde using the Mn/APS. When the relative humidity was increased to 50% in the influent gas stream, the acetaldehyde removal efficiency using the Mn/APS decreased, but only the production rates of CO2 and acetic acid were changed. As a result, the manganese oxide catalyst on the surface of the acid-pretreated honeycomb support manifested high acetaldehyde ozonation even at humid and room temperature conditions.
This study focused on the development of Fe–Co/kaolin catalyst by a wet impregnation method. Response surface methodology was used to study the influence of operating variables such as drying temperature, drying time, mass of support and stirring speed on the yield of the catalyst. The catalyst composite at best synthesis conditions was then calcined in an oven at varied temperature and time using 22 factorial design of experiment. The catalyst with optimum surface area was then utilized to grow carbon nanofiber (CNF) in a chemical vapour deposition (CVD) reactor. Both the catalyst and CNF were characterized using high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. On the influence of operating variables on the yield of catalyst, the results showed that an optimum yield of 96.51% catalyst was obtained at the following operating conditions: drying time (10 h), drying temperature (110 °C), stirring speed (100 rpm) and mass of support (9 g). Statistical analysis revealed the existence of significant interactive effects of the variables on the yield of the catalyst. The HRSEM/XRD/BET/TGA analysis revealed that the particles are well dispersed on the support, with high surface area (376.5 m2/g) and thermally stable (330.88 °C). The influence of operating parameters on the yield of CNF was also investigated and the results revealed an optimum yield of 348% CNF at the following operating conditions: reaction temperature (600 °C), reaction time (40 min), argon flow rate (1416 mL/min) and acetylene/hydrogen flow rate (1416 mL/ min). It was found from statistical analysis that the reaction temperature and acetylene/hydrogen flow rates exerted significant effect on the CNF yield than the other factors. The contour and surface plots bi-factor interaction indicated functional relationship between the response and the experimental factors. The characterization results showed that the synthesized CNF is thermally stable, twisted and highly crystalline and contain surface functional groups. It can be inferred from the results of various analyses that the developed catalyst is suitable for CNF growth in a CVD reactor.
고온에서 진행되는 프로판 탈수소 반응에서 촉매의 불활성화의 주된 원인은 코크 침적, 소결현상이 있다. 이러한 불활성화를 줄이는 촉매를 연구하기 위해, 본 연구에서는 열적 안정성이 높은 MgAl2O4를 담체로 적용하여 프로판 탈수소 반응용 촉매로의 활용성을 확인하고자 하였다. Alcohthermal method로 MgAl2O4를 소성온도 800, 900, 1000℃로 달리하여 제조하였고, Pt와 Sn을 공동함침법으로 담지하여 Pt-Sn/MgAl2O4촉매를 제조하였다. 열적안정성의 확인을 위해 반응온도를 고온의 650, 600℃에서 진행하였다. 반응실험 결과 반응온도에 상관없이 담체의 소성온도가 800℃인 담체적용 촉매일 때 프로판 탈수소 반응 실험의 전환율과 수율이 담체소성온도가 900,1000℃인 담체적용 촉매보다 높은 것을 확인하였고, 반응온도가 고온인 650℃일 때는 Pt-Sn/θ-Al2O3보다도 더 높은 수율을 가지는 것을 볼 수 있었다. 특성분석으로는 TGA, BET, XRD, CO-화학흡착, SEM-EDS 분석을 실시하였다. MgAl2O4-800oC가 좋은 수율과 Pt분산도 및 적은 불활성화 정도의 관계를 서로 연관 지어 확인하였다.
Carbon nanofiber (CNF) grown catalytically was chemically activated with KOH to attain structural change of CNF. The structural changes of CNF through KOH activation were investigated by using BET and SEM. From the results of BET, it was found that KOH activation was effective to develop particular sizes of pores on the CNF surface, increasing the surface area of CNF. Activated CNF was applied as an anode catalyst support of fuel cell. The effects of different activation conditions including the activation temperature and the activation time on the specific surface area of the CNF activated with KOH were investigated to obtain appropriate structure as a catalyst support. The 60 wt% Pt-Ru catalyst prepared was observed by using TEM and XRD.
Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.