Carbon dots (CDs) were synthesized from phloroglucinol (PG) by simple heat treatment at 220–230 °C in the atmosphere without catalysts and solvents. PG-CDs heated at 220–230 °C could be completely dissolved in environmentally friendly water and exhibited a photoluminescence (PL) peak at 485 nm with 85 nm of the full width at half maximum (FWHM). The water-soluble polymer-dot-like PG-CDs were estimated to be 1.6–3.2 nm in size, and exhibited a wide range of PL wavelength at 370–630 nm. Since the PG-CDs are water-soluble materials, PG-CDs could be homogeneously mixed with a polymer such as polyvinylpyrrolidone (PVP) in water as a solvent, and PG-CDs/PVP films were prepared. The films exhibited PL characteristics that convert ultraviolet light at 350 nm to visible light above 400 nm. Thus, using PG as the raw material which has widely been produced industrially, the water-soluble fluorescent PG-CDs/PVP films could be prepared at a low cost by environmentally friendly methods.
This work describes the synthesis and characterization of a heterogeneous catalyst consisting of piperazine-functionalized reduced graphene oxide decorated with Fe3O4 nanoparticles ( Fe3O4@rGO-NH), and the study of its catalytic activity as a magnetic heterogeneous catalyst for the Pechmann synthesis of coumarins. Catalyst Fe3O4@ rGO-NH was fully characterized by various techniques, including IR, XRD, TEM, VSM, TGA, and elemental analysis. Then, the catalyst was used as an efficient and easy-separable heterogeneous catalyst for the solvent-free synthesis of some coumarins by Pechmann reaction. The reaction was optimized in terms of reaction time and temperature, catalyst dosage, and the presence/absence of the solvent. Finally, the reusability of the catalyst was studied.
2-브로모에틸 에틸 에테르를 이용한 2-에티닐피리딘의 무촉매 중합을 통하여 측쇄에 에테르 부분을 갖는 새로운 공액구조 고분자를 합성하였다. 이 중합반응은 비교적 낮은 온도 조건에서도 균일하게 잘 진행 되었으며 89%의 수율로 해당 고분자를 합성할 수 있었다. NMR, IR, UV-visible 분광분석기 등을 이용하여 고 분자의 구조를 분석한 결과 설계한 치환기를 갖는 해당 고분자가 합성되었음을 확인할 수 있었다. 본 고분자는 물을 포함한 DMF, DMSO, DMAc, 메탄올 등의 유기 용매에 완전히 용해하였다. 합성 고분자의 전기화학적 특성과 광발광 특성을 측정하고 분석하였다.
The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some sp-sp 2 linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.
본 연구에서는 선행 연구를 통해 고온전이반응(HTS: High Temperature Shift reaction)에서 높은 활성 및 안정성을 나타내는 Fe-Al-Cu 촉매에 대한 연구를 수행하였다. 연구실 규모(3gcatal./batch)에서 공침법으로 제조된 Fe-Al-Cu 촉매 시스템을 대용량 규모로 스케일-업하기 위해 연구실 규모와 대용량 규모로 제조된 Fe-Al-Cu 촉매의 다양한 물리-화학적 특성을 XRD, H2-TPR, BET, N2 흡착 분석 등으로 분석하였다. 배치당 제조량을 달리하여 제조된 Fe-Al-Cu 촉매는 촉매반응장치를 통해 정량적으로 성능을 비교 평가하였으며 제조된 촉매의 성능을 입증하기 위해 상업용 Fe-Cr 촉매와 성능을 직접 비교하였다. 특히, 선행 연구를 통해 최적화된 고활성 및 고안정성 Fe-Al-Cu 촉매를 대용량 규모로 제조하여 제조량에 따른 성능 변화와 물리화학적 특성간의 상관관계에 대해 규명하였다.