검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.
        4,000원
        2.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to experimentally and numerically explore fracture mechanism characteristics of ultra-thin chopped carbon fiber tape-reinforced thermoplastics (UT-CTT) hat-shaped hollow beam under transverse static and impact loadings. Three distinct failure modes were observed in the impact bending tests, whereas only one similar progressive collapse mode was observed in the transverse bending tests. The numerical model was to incorporate some hypothetical inter-layers in UT-CTT and assign them with the failure model as cohesive zone model, which can perform non-linear characteristics with failure criterion for representing delamination failure. The dynamic material parameters for the impact model were theoretically predicted with consideration of strain-rate dependency. It shows that the proposed modeling approach for interacting damage modes can serve as a benchmark for modeling damage coupling in composite materials.
        4,000원
        3.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/Carbon composite was been manufactured by the technology of warmer-molding process of clutter chopped carbon fiber, using phenolic resin as an adhesive. The degree of graphitization, the microstructure and the friction properties were studied. The results show that the clutter chopped carbon fiber fully scatter in the Carbon/Carbon composite and the degree of graphitization of phenolic resin can reach up to 86.2%, this matrix carbon can form the continuous and stable graphitic thin film on the friction surface during braking process so that the composite has fine friction properties and low wear rate.
        3,000원