검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to optimize the efficiency of cloning and to produce cloned mice. The majority of cloned mammals derived by nuclear transfer (NT) die during gestation and have enlarged and dysfunctional placentas. In this study, the optimized conditions were established to produce clone mice. The parthenogenetic oocytes were activated after 6 h regardless of cytochalasin B (CB) concentration. CB treatment (2 μg/ml) was found second polar body. Lower concentration of CB was decreased the activation rate, but the second polar body was the best highly increased during 6 h incubation. The small fragments were exhibited in the 5 μg/ml treatment of CB, but it was not found in lower concentration groups (> 2.5 μg/ml). To examine effects of SrCl2 on the adult cumulus cells, somatic cell NT oocytes were exposed during 0.5, 1 and 6 hrs. The second polar body was significantly greater in 0.5 h exposure group (6.6%) than 1, 6 hrs. Developmental rate from 2-cell to 4-cell was the lowest in 7.5 mM Strontium chloride (SrCl2) groups (84.1% and 64.3%) than 5, 10 m MSrCl2. The implantation rate was not significantly difference among 5, 7.5 and 10 m MSrCl2 group. Three live fetuses were produced by SCNT. SCNT placentas were remarkably heavier than IVF group (8 fetuses) (0.34, 0.34, 0.33 vs 0.14 g) compared with the placenta weight of IVF and SCNT clones. (Key words : parthenogenetic oocytes, cytochalasin B, cloned mice)
        4,000원
        3.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to develop a cloning technology of mouse embryos by nuclear transplantation with electrofusion and to produce cloned offsprings by transfer of reconstituted embryos. A single nucleus from two- and eight-cell embryos was transplanted into the enucleated two-cell embryos by rnicromanipulation. The fusion of nucleus with recipient cytoplasm and the subsequent development of reconstituted embryos in vitro as well as in vivo to term were examined to determine the optimal electrofusion parameters for nuclear transplantation in mouse embryos. The successful enucleation of donor embryos was 84.9 and 83.3% in two- and eight-cell stage, respectively, and the successful injection of nucleus from two- and eight-cell donor embryos into the perivitelline space of enucleated two-cell embryos were 85.1 and 84.7%, respectively. No significant differences were found in enucleation or injection rate between the cell stages of donor embryos. When the blastomeres of intact two-cell mouse embryos were electrofused in 0.3 M mannitol medium(100 sec., 3 pulses), the fusion rate was similarly 93.2, 92.2 and 92.0% in 1.0, 1.5 and 2.0 kV /crn, respectively, but in vitro development to blastocyst of the fused two-cell embryos was significantly(P<0.05) lower in 2.0 kV/cm (63.4%) than in 1.0 kV/cm (91.7%) or 1.5 kV/cm (82.4%). The development in vitro to eight-cell stage of the reconstituted embryos with nucleus from two-cell stage(45.5%) was significantly(P<0.05) higher than that from eight-cell stage blastomeres (16.7%). The number of blastomeres of the intact embryos at blastocyst stage was 50i0.6 and 552.4 in in vitro and in vivo cultured mouse embryos, respectively, but significantly(P<0.05) decreased to 350.7 in nuclear transplanted blastocyst embryos. The conception rate of mice following embryo transfer was 32.1% in the reconstituted two-cell embryos using two-cell donor nuclei, which was comparable to the fresh two-cell embryos(40.6%). However, the rate of development in vivo to term following embryo transfer of the reconstituted two-cell embryos using two-cell donor nuclei (23.5%) was significantly(P<0.05) lower compared with the percentage of two-cell fresh embryos(31.5%).
        4,000원
        4.
        1993.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        포유동물의 초기 발생단계에서 핵의 분화와 전능성을 규명하고 제2세대 핵이시 기법을 개발하고자 생쥐를 모델로 하여 공핵란은 2-세포기에 있는 수정란의 핵을 사용하였으며, 수핵란은 zygote 및 2-세포기에 있는 수정란을 탈핵하여 제2세대 핵이식을 실시하여 electrofusion system으로 핵융합을 실시하고 cloned embryo를 작출하여 이를 24-48시간동안 체외에서 배양을 시킨 다음 위임신이 유기된 수란생쥐의 난관에 체내 이식을 실시하여
        3,000원