Hydrogen production via photoelectrochemical water splitting relies on the effectiveness of the photoelectrodes. Preparing low-dimensional structures of oxide semiconductors is a promising approach to fabricating effective photoelectrodes, by enhancing the surface-to-volume ratios of the photocatalytic materials. In this study, we performed a comparative investigation of the photoelectrochemical characteristics of p-type oxide semiconductor cupric oxide (CuO) photocathodes based on CuO thin film and nanorods. The CuO thin film was prepared via a facile method involving sputtering a Cu metallic film and subsequent thermal oxidation, while the CuO nanorods were grown via a seed-mediated hydrothermal synthesis method using a CuO nanoparticle seed layer. The structural, optical, and photoelectrochemical properties of the prepared CuO thin film and nanorods were comparatively examined. Our results confirmed that the CuO nanorod photocathode has a higher photocurrent density and better photoconversion efficiency than the CuO thin film photocathode for photoelectrochemical water splitting, implying a promising route to the fabrication of CuO-based photoelectrodes.