검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.04 구독 인증기관·개인회원 무료
        Insect cuticle or exoskeleton is a complex extracellular matrix formed primarily from structural polysaccharide chitin and protein, and it plays a critical role in protecting them from various environmental stresses and pathogenic infection. Despite of limited composition, insect cuticle has remarkably diverse mechanical properties, ranging from soft and flexible to hard and rigid. My research has been focusing on functional importance of the genes involved in chitin metabolism and cuticle tanning (sclerotization and pigmentation) to comprehensively understand the genetic, enzymatic as well as molecular mechanism underlying differentiation, development and formation of insect cuticular extracellular matrices.
        2.
        2013.10 구독 인증기관·개인회원 무료
        To accommodate growth, insects must periodically replace their exoskeletons. The cuticle or exoskeleton consists of multiple functional layers including the waterproof envelope (cuticulin layer), the protein-rich epicuticle (exocuticle) and the chitinous procuticle (endocuticle). After shedding the old cuticle, the newly formed soft and transparent cuticle must harden and tan. During tanning, cross-links form between adjacent polypeptide chains, causing progressive hardening, dehydration, and close packing of the polymers. This cross-linking occurs as a result of oxidative and nucleophilic reactions between highly reactive tanning agents derived from catechols and nucleophilic side chain groups of cuticular proteins (CPs). The initial steps of tanning in most cuticles involve formation of quinones and quinone methides derived from N-acylcatecholamines, followed by their oxidative conjugation with CPs, leading to changes in mechanical properties and pigmentation. This vital physiological step occurs during each stage of development and is required to stabilize and harden the exoskeleton. The mechanism of the insect sclerotization, however, is poorly understood, and the factors that lead to synthesis of cuticular structures with differing physical properties that are unique to each type of cuticle (e.g. elytron, hindwing, pronotum, dorsal and ventral body wall) are not well defined. In this study, we investigated development and differentiation of rigid cuticle using the red flour beetle, Tribolium castaneum adult, as a model insect. Tribolium as a beetle is superior model for studying rigid cuticle formation because they have a highly modified (sclerotized and pigment) forewing (elytron) which can be separated from other tissues easily and cleanly. We analyzed ultrastructure of elytral cuticle during development (from 3 d-old pupae to 3 d-old adults) by transmission electron microscopy (TEM). In 3 d-old pupae, pupal cuticle separated from the epidermal cells (apolysis), and the outermost envelop of adult cuticle was being formed. Protein-rich epicuticle and procuticle composed numbers of horizontal laminae and vertical canals were formed at 4 and 5 d-old pupal stages. After adult eclosion, additional thick horizontal laminae were evident and apical membrane of the epidermal cells became undulae like-structure at 1 d-old adult, and then final three layers with no horizontal laminae were formed by 3days after adult molting. Furthermore, protein localization of several high abundant adult CPs is also discussed. These results will contribute understanding cuticle formation and differentiation in insect during post-embryonic development.
        3.
        2013.10 구독 인증기관·개인회원 무료
        Cuticular proteins (CPs) and the polysaccharide chitin are the major components of the exo- and endocuticular layers or procuticle. CPs contain a conserved sequence known as the Rebers & Riddiford (R&R) motif, which may function as a chitin-binding domain that helps to coordinate the interaction between chitin fibers and the protein network. We identified two highly abundant RR-2 CPs, TcCPR18 and TcCPR27, in protein samples extracted from elytra (rigid cuticle) of Tribolium castaneum adults and determined that these two CPs are required for rigid cuticle morphology. In this study, we identified the third most abundant protein (TcCP30) extracted from the elytra, and cloned a full-length cDNA. It encodes a very unusual 171 amino acid residue protein of which 36% of the residues of the mature protein are Glu, 21% are His, 19% are Arg, and 16% are Gly, organized in a regular pattern but not R&R consensus motif. TcCPR18 and TcCPR27 genes are expressed at 4 d-old pupae, while TcCP30 is highly expressed at 5 d-old pupae (last pupal stage) and 0 d-old adults. Immunohistochemical studies revealed the presence of TcCP30 in rigid adult cuticle (e.g. elytron, pronotum and ventral abdomen) but not soft cuticle (e.g. hindwing and dorsal abdomen). Injection of dsRNA for TcCP30 into late instar larvae had no affect on larval and pupal growth and development. The subsequent pupal-adult molt, however, more than 50% adults were unable to shed their exuvium and died. In addition, the resulting adults exhibited wrinkled, warped and split elytra. TcCP30-deficient adults could not fold their hindwings properly. These results indicate that TcCP30 may play critical roles in rigid adult cuticle formation, development and insect growth and survival. This work was supported by NRF (NRF-2012R1A2A1A01006467).