Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over 100 μm), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ≤3). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.
As a basic study for the removal of oxygen in solid Nd metal by metal Ca vapour, by using the thermodynamic data such as ΔG-T diagrams and Nd-O and Nd-Ca equilibrium diagrams, the amount of residual oxygen in solid Nd metal formed based on deoxidation reaction by Ca vapour, instead of by direct contact of solid Nd metal and Ca solution, was determined. Deoxidation experiments were carried out for solid Nd metal in a temperature range of 890~970 ℃ for 1h to 4h and content of addition Ca of 0.6~1.8 g (5~15 wt% of solid Nd metal). As a result, it was found that as deoxidation temperature increased, dissolved oxygen decreased. Especially, it was observed that a small amount of Nd-Ca alloy liquid was formed on the surface of the solid Nd metal sample deoxidized at 970 ℃ for approximately 1 hour. Also, it was found that if the content of addition Ca was 1.8 g (15 wt% of solid Nd metal) the amount of produced Nd-Ca alloy increased slightly. However, for the Nd sample with which the deoxidation reaction was performed at 930 ℃ for 4h with content of addition of Ca of 1.5 g (13 wt% of Nd metal), the residual oxygen was found to decreased to 12.00 ppm.