Bicuculline is one of the most commonly used GABAд eceptor antagonists in electrophysiological research. Because of its poor water solubility, bicuculline quaternary ammonium salts such as bicuculline methiodide (BMI) and bicuculline methbromide are preferred. However, a number of studies have shown that BMI has non-GABAд eceptor-mediated effects. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is implicated in the processing of nociceptive signaling. In this study, we investigated whether BMI has non-GABA receptor-mediated activity in Vc SG neurons using a whole cell patch clamp technique. SG neurons were depolarized by application of BMI (20M) using a high Cℓ⁻ipette solution. GABA ( 30-100μM) also induced membrane depolarization of SG neuron. Although BMI is known to be a GABAд receptor antagonist, GABA-induced membrane depolarization was enhanced by co-application with BMI. However, free base bicuculline (fBIC) and picrotoxin (PTX), a GABAд and GABAс receptor antagonist, blocked the GABA-induced response. Furthermore, BMI-induced membrane depolarization persisted in the presence of PTX or an antagonist cocktail consisting of tetrodotoxin (Nα+ nnel blocker),AP-5 (NMDA receptor antagonist), CNQX (non-NMDA receptor antagonist), and strychnine (glycine receptor antagonist). Thus BMI induces membrane depolarization by directly acting on postsynaptic Vc SG neurons in a manner which is independent of GABAд receptors. These results suggest that other unknown mechanisms may be involved in BMI-induced membrane depolarization.
Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate (IP₃)receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular Cα²+ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular Cα²+ store mainly via PLC-IP₃pathway.