This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.
Diamond-like nanocomposite (DLN) has become a promising thin film for many fields of applications due to its unique and tunable properties. However, low optical bandgap and thermal stability limits its application in many fields particularly as antireflection coating on solar cell. In the present study, the DLN thin film has been deposited using a mixed liquid precursor by rf-PECVD process. Surprisingly the presence of nc-C60 in FCC structure in DLN matrix has been observed. The degree of crystallinity and diameter of C60 have been increased significantly after annealed at 850 °C. The film has been annealed at 850 °C to primarily investigate its feasibility as antireflection coating (ARC) in compatible with industrial solar cell fabrication process. The refractive index and optical bandgap of the film were around 1.80 and 4.10 eV, respectively. Moreover, the optical bandgap has decreased to some extent to 3.92 eV even after annealing at such high temperature. The high SiOx at% and embedded nc-C60 enhanced the optical transparency and thermal stability of the DLN film. The solar-weighted average reflection of DLN-coated textured silicon was reduced significantly to 1.91%. The C60 embedded DLN film has a great potential to apply in different optoelectronic devices especially in solar cell as ARC.
A 1.8 μm thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.
다이아몬드 증착시 기판의 표면처리를 변화시켰을 때 다이아몬드의 핵생성 밀도에 미치는 영향에 대하여 연구하였다. 실험장치는 열 필라멘트 CVD 장치를 사용하였고, 반응가스로 메탄과 수소가스를 사용하였다. 기판의 표면 처리는 탄소 상을 기판에 증착시키는 방법, Soot에 의한 기판 표면처리, 혹연에 의한 기판 표면처리로 크게 3가지로 행하였다. 모든 경우에 핵생성 밀도가 증가하였으나 탄소 상을 증착시킨 경우와 soot에 의한 사전처리의 경우의 핵생성 밀도의 증가가 혹연에 의한 처리보다 더 현저하였다. 또한 탄소강의 증착의 경우 표면에 굴곡이 없는 매우 평탄하고 균일한 다이아몬드 막을 얻을 수 있었다. 사전증착처리 한 기판에 탄소 층을 형성시켰을 때 탄소 층과 기판과의 접착력이 약한 것을 이용하여 다이아몬드 막을 쉽게 분리시켜 free standing 다이아몬드 박막을 얻을 수 있음을 알았다.