The heat transfer characteristics of double-pipe spiral heat exchanger using aluminum oxide nano-fluid were investigated by three different sizes of curvature size, experimentally. Five concentration of nano-fluid as working fluid were made and tested to analyze the heat transfer characteristics. As results, the heat transfer performance was improved at 0.25% of nano-fluid due to high thermal conductivity, however, as the concentration of nanofluid increased (~2.0%), the heat transfer performance deteriorated due to the increase in thermal resistance caused by the sedimentation of particles in the flow path. In addition, the nano-fluid has a higher pressure drop than water due to its high density and viscosity. The optimal range for heat transfer enhancement of nano-fluid was found to be less than 4.0 LPM in flow rate and 0.25% of nano-fluid concentration in this study.
The heat transfer characteristics of double-pipe spiral heat exchanger were investigated by various curvature sizes, experimentally. The three different sizes of heat exchanger were made and tested with water as a working fluid to analyze the heat transfer characteristics. The heat transfer rates, overall heat transfer coefficient and pressure drop were analyzed with various heat exchanger sizes (i.e., curvature ratios). As result, the heat transfer rate increased with increasing the size of the heat exchanger as the flow rate increased due to increasing the area size of heat transfer. However, the overall heat transfer coefficient and pressure drop increased with decreasing the heat exchanger size (i.e., increased curvature ratio) due to the enhanced centrifugal force and inertia.