검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area(1,296.1 m2 g−1), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance(195 F g−1) at low current density of 0.1 A g−1 and excellent specific capacitance(164 F g−1) at high current density of 2.0 A g−1. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.
        4,000원
        2.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of 696 m2 g−1, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of 110.1 F g−1 at a current density of 0.1 A g−1 and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of 0.1 A g−1. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
        4,000원
        3.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 m2/g and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/cm2, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.
        3,000원