Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.
Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area(1,296.1 m2 g−1), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance(195 F g−1) at low current density of 0.1 A g−1 and excellent specific capacitance(164 F g−1) at high current density of 2.0 A g−1. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.
Nb-doped TiO2(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ~25.3o , corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).
To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of 696 m2 g−1, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of 110.1 F g−1 at a current density of 0.1 A g−1 and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of 0.1 A g−1. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
High performance lithium-ion batteries (LIBs) have attracted considerable attention as essential energy sources for high-technology electrical devices such as electrical vehicles, unmanned drones, uninterruptible power supply, and artificial intelligence robots because of their high energy density (150-250 Wh/kg), long lifetime (> 500 cycles), low toxicity, and low memory effects. Of the high-performance LIB components, cathode materials have a significant effect on the capacity, lifetime, energy density, power density, and operating conditions of high-performance LIBs. This is because cathode materials have limitations with respect to a lower specific capacity and cycling stability as compared to anode materials. In addition, cathode materials present difficulties when used with LIBs in electric vehicles because of their poor rate performance. Therefore, this study summarizes the structural and electrochemical properties of cathode materials for LIBs used in electric vehicles. In addition, we consider unique strategies to improve their structural and electrochemical properties.
Needle-like NiO protecting layers on NiCrAl alloy foam, used as support for hydrogen production, are introduced through electroplated Ni and subsequent microwave annealing. To improve the stability of the NiCrAl alloy foam, oxygen concentration of microwave annealing to form a needle-like NiO layer with good chemical stability and corrosion resistance is controlled in a range of 20 and 50 %. As the oxygen concentration increases to 50 %, needle-like NiO forms a dense coating layer on the NiCrAl alloy foam; this layer formation can be attributed to accelerated growth of the (200) plane. In addition, the increased oxygen concentration causes increased NiO/Ni ratio of the resultant coating layer on NiCrAl alloy foam due to improved rate of the oxidation reaction. As a result, the introduction of dense needle-like NiO layers formed at 50 % oxygen concentration improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the electrolyte and the foam. Thus, needle-like NiO can be proposed as a superb protecting layer to improve the chemical stability of NiCrAl alloy form.
Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.
Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide (OH−) and nickel ions (Ni+) in lower pH than pH-11.5. Flower-like NiO catalysts (~4.7 μm-6.6 μm) were formed owing to the fast reaction of OH− and Ni2+ by increased OH− concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.
Perforated polygonal cobalt oxide (Co3O4) is synthesized using electrospinning and a hydrothermal methodfollowed by the removal of a carbon nanofiber (CNF) template. To investigate their formation mechanism, thermogravi-metric analysis, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are examined. To obtain the optimum condition of perforated polygonal Co3O4, we pre-pare three different weight ratios of the Co precursor and the CNF template: sample A (Co precursor:CNF template-10:1), sample B (Co precursor:CNF template-3.2:1), and sample C (Co precursor:CNF template-2:1). Among them, sam-ple A exhibits the perforated polygonal Co3O4 with a thin carbon layer (5.7-6.2 nm) owing to the removal of CNF tem-plate. However, sample B and sample C synthesized perforated round Co3O4 and destroyed Co3O4 powders, respectively,due to a decreased amount of Co precursor. The increased amount of the CNF template prevents the formation of polygonalCo3O4. For sample A, the optimized weight ratio of the Co precursor and CNF template may be related to the suc-cessful formation of perforated polygonal Co3O4. Thus, perforated polygonal Co3O4 can be applied to electrode materialsof energy storage devices such as lithium ion batteries, supercapacitors, and fuel cells.
To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer- Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/ C(40 wt% Pt on Vulcan carbon, E-TEK).