Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.
본 연구에서는 새로운 비선형해석 알고리즘인 적응형 Newton-Raphson 반복기법을 제안한다. 제안된 기법은 기존 Newton-Raphson 기법을 근간으로 적응형 부구조물화 기법을 이용하여 강성등가하중을 구하고, 이미 역행렬이 계산되어 있는 초기강성행렬에 강성등가하중을 적용하여 보정변위를 구하는 것으로 요약된다. 제안된 알고리즘의 가장 큰 특징은 하중 구간의 수에 관계없이 구조물 강성행렬에 대한 역행렬 계산을 단 한번만 수행한다는 것이다. 제안된 기법의 효율성은 강성행렬 및 역행렬 계산 후 부재강성행렬이 변경된 부재들이 연결된 자유도 수와 전체 자유도 수의 비율에 직접 관계된다. 이 비율에 따라 제안된 기법을 기존 비선형해석 기법과 보완적으로 사용함으로써 전체 비선형해석 효율을 향상시킬 수 있다.
본 연구에서는 요소의 추가 및 제거 또는 부분적인 강성 변경이 있을 때, 이러한 강성 변경이 전체 구조물의 거동에 미치는 영향을 하중으로 표현한 강성등가하중을 제안한다. 강성등가하중에 의한 재해석은 초기 구조물을 대상으로 하므로 이미 계산된 강성행렬 및 역행렬을 다시 사용할 수 있어 재해석 효율을 크게 향상시킬 수 있다. 본 논문에서는 강성등가하중의 개념을 정의하고 간단한 병렬 스프링 구조물을 이용하여 강성등가하중 산정 가능성에 대하여 우선 기술한다. 다음으로 일반적인 골조 구조물에서 강성 변경에 대한 강성등가하중 산정 절차를 제안하고, 마지막으로 몇몇 강성 변경 사례에 대한 강성등가하중 산정 및 해석결과를 제시함으로써 제안된 기법을 검증한다. 강성등가하중은 향후 비선형해석, 구조물 거동및 응력 제어 등 다양한 문제에 활용될 수 있을 것으로 기대된다.
교량 구성요소의 설계지진력은 현행 국내 도로교설계기준에 의하면 설계지진을 가하여 얻어진 탄성지진력을 구조형식에 따른 응답수정계수로 나눔으로써 결정되어진다. 말뚝기초가 채택된 교량시스템의 탄성지진력의 크기는 말뚝기초의 모형화 방법에 따라 크게 달라질 수 있다. 이 논문에서는 근사적이고 실용적인 말뚝기초의 모형화 기법을 제시하였다. 이 모형화 기법에서는 말뚝기초의 강도를 횡방향으로 반복하중을 가진 현장시험으로 얻은 말뚝-지반의 상호작용이 고려된 지반반력-변위 곡선을 이용한 말뚝의 수평방향 강도와 탄성 축변형은 물론 선단지지력 및 주변마찰력을 고려한 말뚝의 수직방향 강도로 나타내는 것이다. 예제 교량의 해석을 수행하여 제시된 절차가 타당성있고 적용 가능한 교량의 지진응답해석용 말뚝기초의 모형화 기법임을 검증하였다.