불연속 갤러킨 정식화에 기초를 둔 시간적분법에 대하여 시간을 변수로 한 유한요소적 접근법을 시도하였다. 단일 형상함수와 두 형상함수 정식화에 대해 각각 선형, 이차 형상함수를 적용하여 모두 네 종류의 시간적분법을 유도하였으며, 각 방법에 대하여 시간시텝의 증가에 따른 변위와 속도의 관계를 나타내는 증폭행렬을 계산하였다. 유도된 방법들의 성능을 평가하기 위하여 부하가 갑자기 변화는 진동 문제를 해석하고 변위의 오차를 비교하였다. 네 가지의 방법에 대하여 국부 오차 추정치를 개발하였으며, 오차 추정치의 정확도를 수치예를 이용하여 평가하였다. 단일 형상함수 정식화에서 이차 형상함수를 이용한 오차 추정치가 실제 국부오차를 잘 나타내었으며 유도된 오차 추정치는 시간간격제어 기법에서 시간간격의 크기를 결정하는 척도로 이용 가능하다.
A stochastic Hamilton variational principle(SHVP) is formulated for dynamic problems of linear continuum. The SHVP allows incorporation of probabilistic distributions into the finite element analysis. The formulation is simplified by transformation of correlated random variables to a set of uncorrelated random variables through a standard eigenproblem. A procedure based on the Fourier analysis and synthesis is presented for eliminating secularities from the perturbation approach. In addition to, a method to analyse stochastic design sensitivity for structural dynamics is present. A combination of the adjoint variable approach and the second order perturbation method is used in the finite element codes. An alternative form of the constraint functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The algorithms developed can readily be adapted to existing deterministic finite element codes. The numerical results for stochastic analysis by proceeding approach of cantilever, 2D-frame and 3D-frame illustrates in this paper.