검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ROPS is a structure installed to protect drivers from tractor rollover accidents and is being tested for certification under the OECD code. Because this test requires a lot of cost and time to develop the ROPS and to produce test model, the OECD is discussing the introduction of virtual test using finite element analysis. In this study, the results were compared by conducting a strength test and finite element analysis applied with the OECD code to use it as a basic data for standardization of ROPS virtual test methods. It was confirmed that the results of the analysis of the bolts and plates of the coupling part and the folding part were more close to the physical test results than the rigid elements and constraints at the point of coupling the tractor and ROPS.
        4,300원
        2.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The computing environment has changed rapidly to enable large-scale finite element models to be analyzed at the PC or workstation level, such as multi-core CPU, optimal math kernel library implementing BLAS and LAPACK, and popularization of direct sparse solvers. In this paper, the design considerations on a parallel finite element code for shared memory based multi-core CPU system are proposed; (1) the use of optimized numerical libraries, (2) the use of latest direct sparse solvers, (3) parallelism using OpenMP for computing element stiffness matrices, and (4) assembly techniques using triplets, which is a type of sparse matrix storage. In addition, the parallelization effect is examined on the time-consuming works through a large scale finite element model.
        4,000원
        3.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using C++ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.
        4,000원