NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.
Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects.