검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, epoxy composites were reinforced with multi-walled carbon nanotubes and fused silica particles, dispersing the fillers within the epoxy resin based on a simple physical method using only shear mixing and ultrasonication. The hybrid composite specimens with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed improved mechanical properties, with increase in tensile strength and Young’s modulus up to 12 and 37%, respectively, with respect to those of the baseline specimens. The experimental results showed that the low thermal expansion of the silica particles improved the thermal stability of the composites compared with that of the baseline specimen, whereas the thermal expansion slightly increased, due to the increased heat transfer from the exterior to the interior of specimens by the carbon nanotube filler. The coefficient of thermal expansion of the hybrid composite specimen reinforced with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles was decreased by 25%, and the thermal conductivity was increased by about 84%, compared with those of the baseline specimen.
        4,500원
        2.
        2011.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        La0.6Sr0.4MnO3 (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at 800˚C, the layer distinction against the underplayed SiO2 was well preserved. However, when the annealing temperature was raised to 900˚C, interdiffusion and interreaction occurred. Most of the SiO2 and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to 950˚C, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.
        3,000원