Decommissioning waste is generated with various types and large quantities within a short period. Concrete, a significant building material for nuclear facilities, is one of the largest decommissioning wastes, which is mixed with aggregate, sand, and cement with water by the relevant mixing ratio. Recently, the proposed treatment method for volume reduction of radioactive concrete waste was proven up to scale-up testing using unit equipment, which involved sequentially thermomechanical and chemical treatment. According to studies, the aggregate as non-radioactive material is separated from cement components with contaminated radionuclides as less than clearance criteria, so the volume of radioactive concrete waste is decreased effectively. However, some supplementation points were presented to commercialize the process. Hence, the process requires efficiency as possible to minimize the interface parts, either by integration or rearranging the equipment. In this study, feasibility testing was performed using integrated heating and grinding equipment, to supplement the possible issue of generated powder and dust during the process. Previously, heat treatment and grinding devices were configured separately for pilot-scale testing. But some problems such as leakage and pipe blockage occurred during the transportation of generated fine powder, which caused difficulties in maintaining the equipment. For that reason, we studied to reduce the interface between the equipment by integrating and rearranging the equipment. To evaluate the thermal grinding performance, the fraction of coarse and concrete fines based on 1mm particle size was measured, and the amount of residual cement in each part was analyzed by wet analysis using 4M hydrochloric acid. The result was compared with previous studies and the thermomechanical equipment could be selected to enhance the process. Therefore, it is expected that the equipment for commercialization could be optimized and composed the process compactly by this study.
The study of grinding behavior characteristics on the metal powders has recently gained scientific interest due to their useful applications to enhance advanced nano materials and components. This could significantly improve the property of new mechatronics integrated materials and components. So, a new evaluation method for standardizing grinding equipment and a comparative study for the grinding experiment during the grinding process with various grinding mills were investigated. The series of grinding experiments were carried out by a traditional ball mill, stirred ball mill, and planetary ball mill with various experimental conditions. The relationship between the standardization of equipment and experimental results showed very significant conclusions. Furthermore, the comparative study on the grinding experiment, which investigated changes in particle size, particle morphology, and crystal structure of materials with changes in experimental conditions for grinding equipment, found that the value of particle size distribution is related to the various experimental conditions as a revolution speed of grinding mill and media size.