This study was evaluated based on the items of KS B 6389. The study on the calculation of angular error and measurement uncertainty of HRc hardness measurement using statistical techniques using Rockwell measurement specimens with different hardness values was analyzed, and the results were derived according to the change in the angle of the indenter part of the hardness tester and the specimen. As a result of the experiment, the test statistic P values for angle changes such as 0°, 1°, and 2° were all 0.000 using the HRc 30 and 40 measurement specimens, so it was confirmed through the experiment that a significant difference occurred between them. In addition, the extended uncertainty value was calculated as 0.612 at the 95.45% confidence level, and the fact that the hardness test value came out smaller than the existing test value as the inclination angle increased was verified through experiments.
This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/cm2 and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.
The indentation technique has been one of the most commonly used techniques for the measurement of the mechanical properties of materials due to its experimental ease and speed. Recently, the scope of indentation has been enlarged down to the nanometer range through the development of instrumentations capable of continuously measuring load and displacement. In addition to testing hardness, the elastic modulus of submicron area could be measured from an indentation load-displacement (P-h) curve. In this study, the hardness values of the constituent phases in Ti()-NbC-Ni cermets were evaluated by nanoindentation. SEM observation of the indented surface was indispensable in order to separate the hardness of each constituent phase since the Ti()-based cermets have relatively inhomogeneous microstructure. The measured values of hardness using nanoindentation were GPa for hard phase and GPa for binder phase. The effect of NbC addition on hardness was not obvious in this work.