검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.05 구독 인증기관·개인회원 무료
        The α-proteobacterium Wolbachia pipientis infects a wide range of arthropods and filarial nematodes. Wolbachia is maternally inherited and is known to induce reproductive anomalies such as cytoplasmic incompatibility, feminization, male killing and parthenogenesis induction (PI). Trichogramma kaykai is a tiny wasp that parasitizes on lepidopteran eggs. When a female of the wasp is infected with PI-Wolbachia, the female produces female offspring via gamete duplication without the aid of sperm. As she ages, however, the fraction of male offspring increases. In this study, we investigated the effect of host genetic background on the expression of sex ratio between isofemale lines. Virgin females of six isofemale lines were allowed to lay eggs individually for 10 days. There was the positive relationship between female age and the offspring sex ratio. Furthermore, the sex ratio was significantly different among isofemale lines, implying that the host genetic background had an effect on the sex ratio. Based on the results, evolution of symbiosis in terms of sex ratio and future experimental design are discussed.
        2.
        2008.05 구독 인증기관·개인회원 무료
        The paternal sex ratio (PSR) chromosome is considered as an extremely selfish genetic element. It has only been found in the two hymenopteran insects- Nasonia and Trichogramma- with haplodiploid sex determination. When an egg is fertilized by sperm bearing PSR, the paternal genome is destroyed by PSR soon after fertilization resulting in haploid restoration and the egg develops into a male with only the maternal genome and PSR itself. Recently PSR is paid much attention, since it may be used for controlling haplodiploid pests. PSR can be successfully transferred from its natural host, T. kaykai to the novel host, T. deion. In the two hosts another sex ratio distorter, Wolbachia, is found. Wolbachia is a cytoplasmically inherited bacterium that induces parthenogenesis in this genus resulting in female offspring production without fertilization. The transmission efficiency of PSR in T. deion is lower than that in T. kaykai and is negatively influenced by the Wolbachia infection. The results show that 1) there is a negative host genetic background effect on the transmission of PSR in the novel host, 2) the transmission efficiency becomes even lower, when PSR males are infected with Wolbachia. The results imply that complex interactions among the bacterium, PSR and the species specific genetic background.