Fuzzy information representation of multi-source spatial data is applied to landslide hazard mapping. Information representation based on frequency ratio and non-parametric density estimation is used to construct fuzzy membership functions. Of particular interest is the representation of continuous data for preventing loss of information. The non-parametric density estimation method applied here is a Parzen window estimation that can directly use continuous data without any categorization procedure. The effect of the new continuous data representation method on the final integrated result is evaluated by a validation procedure. To illustrate the proposed scheme, a case study from Jangheung, Korea for landslide hazard mapping is presented. Analysis of the results indicates that the proposed methodology considerably improves prediction capabilities, as compared with the case in traditional continuous data representation.
The seasonal variation and frequency of rainfalls of Korea peninsula in Changma period show strong local weather phenomenon because of it's topographical and geographical factors in Northeast side of Asia. Based on weather entropy(statistical parameter)-the amount of average weather information-and information ratio, we can define each area's weather representativeness, which can show us more constant form included topographical and geographical factors and seasonal variation. The data used for this study are the daily precipitation and cloudiness during the recent ten years(1990-1999) at the 73 stations in Korea. To synthesize weather Entropy, information ratio of decaying tendency and half-decay distance, Seoul's weather representativeness has the smallest in Summer Changma period. And Puyo has the largest value in September.