본 논문에서는 프리팹 구조물의 품질관리를 위한 딥러닝 및 비전센서 기반의 조립 성능 평가 모델을 개발하였다. 조립부 검출을 위 해 인코더-디코더 형식의 네트워크와 수용 영역 블록 합성곱 모듈을 적용한 딥러닝 모델을 사용하였다. 검출된 조립부 영역 내의 볼트 홀을 검출하고, 볼트홀의 위치 값을 산정하여 k-근접 이웃 기반 모델을 사용하여 조립 품질을 평가하였다. 제안된 기법의 성능을 검증 하기 위해 조립부 모형을 3D 프린팅을 이용하여 제작하여 조립부 검출 및 조립 성능 예측 모델의 성능을 검증하였다. 성능 검증 결과 높은 정밀도로 조립부를 검출하였으며, 검출된 조립부내의 볼트홀의 위치를 바탕으로 프리팹 구조물의 조립 성능을 5% 이하의 판별 오차로 평가할 수 있음을 확인하였다.
A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's λ, D&B(Rij) & Tou are discussed.
산업의 발전에 따라 기반시설 및 인구 등이 대도시에 밀집되어, 도시홍수방어는 인명피해 뿐만 아니라 재산피해 저감 차원에서도 매우 중요한 문제 가 되었다. 요즘은 이러한 도시유역의 유출해석을 보다 정확하게 하기 위해 시강우나 분단위의 강우자료를 활용하고 있다. 하지만 기후변화 시나리오 와 같은 미래 강우시나리오는 현재 일단위 수준으로 제공되므로 미래 강우에 대한 확률빈도 해석에 제한이 있다. 이에 본 연구에서는 추계학적 기법을 이용해 일강우 자료를 시강우 자료로 분해하고자 하였다. 일자료를 시자료로 분해하기 위해 과거 시강우 자료를 기반으로 Gram Schmidt 변환과 K 개의 최근접 표본 중 하나를 재추출하는 비모수적인 기법(KNNR)을 적용하였다. 이 방법은 연유출량을 월유출량으로 분해하기 위해 개발된 것이다. 하지만 강우자료는 유출량 자료와 달리 확률밀도가 작아 일강우를 시강우로 분해하는 데 직접 적용하는 경우 결과가 실제와 유사한 통계 패턴을 갖는 다고 보기 어려웠다. 이를 보완하기 위해 본 연구에서는 분해하고자 하는 일자의 전일과 후일을 포함한 3일 강우패턴을 7개로 구분하고 동일 패턴을 가진 자료들만 분해에 이용하도록 하여 강우자료에 대한 적용성을 높였다. 과거 52년간의 서울기상관측소 시강우 자료를 이용하여 강우자료의 분해 에 대한 결과를 분석한 결과, 분해된 시강우 자료가 관측된 시강우자료와 통계적으로 매우 유사한 것을 확인하였다. 향후 기후변화자료의 시강우 분해 등에 활용하여 보다 정확한 도시유출에 대한 빈도해석 등에 적용할 수 있을 것으로 판단된다.