This research combines the liquid carbon precursor infiltration process for carbon/carbon composites with the fabrication procedure for organic, carbon-matrix friction materials in automotive. In the densification process, different liquid carbon precursors and numbers of densification cycle are adopted to investigate the influence on physical and mechanical properties, microstructure and tribological behavior. Experimental results indicate that the infiltration of liquid carbon precursors could improve the physical, mechanical properties and tribological performances of organic friction materials. The open porosity decreases with the number of densification cycle. Both bulk density and hardness increase with the number of densification cycle. The resin-based specimens show higher hardness and lower open porosity than those of the pitch-based specimens after each densification cycle. The tribological measurement of specimens with different carbon precursors shows that the pitch-based specimen shows lower and more stable friction coefficients and exhibits lower weight losses in comparison with other carbon precursors. Morphological observations show that a large area of smooth lubricative film was easily presented on the worn surfaces of the pitch-based specimens, whereas it was seldom observed on the worn surfaces of the preform specimen and resin-based specimens.
C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.
다공성 알루미나 소결체내부로 3Y-TZP 및 12Ce-TZP 전구체를 각각 액상침투시킴으로써 2종류의 Al2O3/TZP복합체를 제조하였다. 소량의 (~11.0 wt%) TZP의 첨가는 Al2O3소결체 (1600˚C, 2시간)의 강도 (19~59%)와 파괴인성(14~157%)을 증가시켰다. 3Y-TZP의 첨가는 복합체의 강도의 향상에 12Ce-TZP의 첨가는 인성의 향상에 보다 효과적이었다. 침투도니 TZP는 복합체의 내부보다 표면에 집중되었으며, 그 결과 이곳에서의 입성장에 빨랐고 Al2O3의입성장 억제효과도 상대적으로 뛰어났다. 입계 및 입내균열전파가 일어났으나 Al2O3/12Ce-TZP의 경우가 Al2O3/3Y-TZP에 비하여 입계파괴가 우세하였다