Level measurement of liquid radwaste is essential for inventory management of treatment system. Among various methods, level measurement based on differential pressure has many advantages. First, it is possible to measure the liquid level of the system regardless of liquid type. Second, as the instrument doesn’t need to be installed near the tank, there is no need to contact the tank when managing it. Therefore, workers’ radiation dose from the system can be decreased. Finally, although it depends on the accuracy, the price of the instrument is relatively low. With these advantages, in general, liquid radwaste level in a tank is measured using differential pressure in the treatment system. Not only the advantages described above, there are some disadvantages. As the liquid in the system is waste, it is not pure but has some suspended materials. These materials can be accumulated in tanks and pipes where the liquids move to come into direct contact with pneumatic pipes that are essential in differential pressure instruments. As a result, in case of a treatment using heat source, the accumulated materials may become sludge causing interference in pneumatic pipes. And this can change the pressure which also affects the level measured. In conclusion, in case of liquid storage tanks in which the situation cannot be checked, the proficiency of an operator becomes important.
본 총설논문에서는 과거 방사능누출 사고사례를 제시하고 그에 따른 위험성을 논하였다. 또한 방사성 폐액 내의 방사성 이온들을 제거하기 위한 방법을 대별하고 실증사례들을 열거하였다. 여러 가지 방법을 복합적으로 사용한 실험결과 및 특허가 많이 있지만, 국내기술이 해외기술에 비해 미미한 실정이다. 후에 일어날 수도 있는 사고에 대비해서라도 국내 기 술력의 발전과 경쟁력은 꼭 필요하다. 본 논문을 통해 방사성 이온 제거에 대한 현재 기술상황을 고찰하고 발전가능성에 대 해 알아보고자 하였다.