We report the current status of Japanese lunar exploration SELENE (SELenological and ENgineering Explorer). As of the end of 2004, scientific instruments onboard the Main Orbiter are under final checkout before they are provided to the proto-flight-model (PFM) integration test. Also, we present the future perspectives of the lunar based instruments and facilities. 'In-situ Lunar Orientation Mea-surement (ILOM)' experiment measures the lunar rotation with high accuracy by tracking stars on the Moon with a small photo-zenith-tube type optical telescope. A basic idea of a radio telescope array of very low frequency range on the lunar far-side is also mentioned.
This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30–50 km reference altitude having ±10 km deadband limits) around the Moon for 1–6 months and provide almost full coverage of the lunar surface.
In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the 11th member of the “Space Club” in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.
The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ΔV and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat’s impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ΔV since the CubeSat is limited in size and cost. Therefore, the ΔV needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of 15°, among the possible impacting scenarios. For this scenario, the required ΔV is calculated as the result of the ΔV analysis. It can be used to practically make an estimate of this specific mission’s fuel budget. In addition, the current study suggests error constraints for ΔV for the mission.
In this paper, a brief but essential development strategy for the lunar orbit determination system is discussed to prepare for the future Korea’s lunar missions. Prior to the discussion of this preliminary development strategy, technical models of foreign agencies for the lunar orbit determination system, tracking networks to measure the orbit, and collaborative efforts to verify system performance are reviewed in detail with a short summary of their lunar mission history. Covered foreign agencies are European Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organization and China National Space Administration. Based on the lessons from their experiences, the preliminary development strategy for Korea’s future lunar orbit determination system is discussed with regard to the core technical issues of dynamic modeling, numerical integration, measurement modeling, estimation method, measurement system as well as appropriate data formatting for the interoperability among foreign agencies. Although only the preliminary development strategy has been discussed through this work, the proposed strategy will aid the Korean astronautical society while on the development phase of the future Korea’s own lunar orbit determination system. Also, it is expected that further detailed system requirements or technical development strategies could be designed or established based on the current discussions.
In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS) conditions (weather orbiter is located at near or far side of the Moon seen from the Earth) are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs) are assumed to be Korea’s future Near Earth Networks (NENs) to support lunar missions, and world-wide separated Deep Space Networks (DSNs) are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.