This paper presented experimental results for photocatalytic air cleaner removal performance for malodorous compounds generated from rest room. Photocatalytic oxidation (PCO) efficiency was up to 80∼ 90% for NH3 in chamber, 29.3% for H2S, 79.6% for CH3SH, 58.8% for DMDS individually. PCO efficiency for DMS(Dimethy Sulfide) and DMDS(Dimethyl Disulfide) were relatively lower than that of NH3 and CH3SH, this results indicate that DMS and DMDS removal process were effected by by-products of photocatalytic oxidation and humidity. Ozone was relatively low (below 5ppb) under the test conditions through photocatalytic oxidation. It is necessary to test a reliability of the air cleaner for a longtime under the various indoor conditions. But, prototype photocatalytic air cleaner will promise useful air cleaner for indoor air quality applications.
Continuous deodorization of malodorous sulfur compounds by Thiobacillus neapolitanus R-10 immobilized onto a polypropylene pellet was studied using a column reactor at 30℃. The maximum amounts of immobilized cells was 5.3 g/ℓ polypropylene with 5 × 7.5㎜ in pellet size, and the amounts of immobilized cells in the higher part of the column was as twice as in the lower part. The optimum pH and temperature for removal of dimethyl sulfide were 6.0 and 30℃, respectively. When 5-20 ㎕/ℓ of hydrogen sulfide and methylmercaptan were employed 98% of removal efficiency were achieved. In contrast, lower concentrations of dimethyl sulfide and dimethyldisulfide should be supplied to meet satisfactory deodorization efficiency. The immobilized cell column was successfully operated for the deodorization of mixture of sulfur compounds over 15 days without significant loss of initial activity achieving high efficiency.