최근에는 경량화 문제에 대한 합리적인 솔루션을 제공하고 유용한 개념설계를 제공할 수 있는 다중 재료 구조 위상최적화가 더욱 중요해지고 있다. 기존의 MMTO(Multi-Material Topology Optimization)의 경우 후보 물질의 수가 증가할수록 설계변수의 수도 증가 하고, 결과적으로 계산 시간이 크게 증가한다. 따라서 PSM(Phase Section Method)과 같은 단일 설계변수를 갖는 MMTO가 제안되었 다. 본 연구는 조성비가 면적이나 부피비를 나타내지 못하고, 설계변수가 목표치에 충분히 집중되지 않고, 특정 재료가 요구량보다 적 게 생성되는 PSM의 세 가지 주요 제한점을 고려하여 이를 개선하는데 중점을 둔다. 이러한 한계를 극복하기 위해 재정의된 조성비와 더 나은 수렴을 위한 조정된 매개변수를 제안한다. 제안된 수정 사항의 유효성을 2차원 및 3차원 수치 예제를 통해 검증한다.
본 연구에서는 판 구조물의 최적위상을 찾기 위한 비대칭 층을 가지는 인공재료모델을 이용한 위상최적화기법을 제시하였다. 구절점 판요소를 형성하기 위하여 판의 일차전단변형을 고려하는 Reissner-Mindlin 판이론이 도입되었다. 최소화하고자 하는 변형에너지를 목적함수로 하고 구조물의 초기부피를 제약함수로 채택하였다 인공재료모델에 존재하는 다공성물질의 구멍의 크기를 조절하기 위하여 최적정기준법을 바탕으로 하는 크기조절알고리듬을 도입하였다. 제시된 위상최적화 기법의 성능을 조사하기 위하여 수치예제를 수행하였다. 수치해석결과로부터 제시된 위상최적화기법은 판구조물의 최적위상을 도출하는데 매우 효과적인 것으로 나타났다. 특히 제시된 비대칭 층모델은 판구조물의 보강재를 보다 실제적으로 도출하는데 유용할 것으로 나타났다.
이산화 된 구조물의 위상최적화 과정은 균일하게 분포된 재료 밀도의 위상으로 표현되는 초기 설계영역을 시발점으로 한다. 최적화 과정 동안 구조물의 위상은 고정된 설계영역 내에 주어진 최적화 문제를 만족시키는 방향으로 변화하면서, 최종적으로 최적 위상의 재료 밀도 분포를 생산한다. Eschenauer et al.에 의해 제안되었던 설계영역 안에 구멍을 도입하는 개념은 원래 경계면의 최적화 문제에 대해 설계변수의 유한적인 변화를 촉진시켜 최적화의 수렴성 개선을 도모하기 위함이었으나, 위상최적화의 관점에서는 초기 위상의 정의에 따라 다양한 최적 위상이 생산되는 것을 의미한다. 본 연구에서는 초기 설계영역 안에 국소적인 솔리드 상을 도입해 초기 위상에 변화를 주었을 때, 한정된 재료 하에 구조물에 배치 가능한 다양한 최적 위상을 산출할 수 있음을 검증하였다. 수치 예제로서 초기 설계영역 내에 다양한 치수를 가지는 국부적인 원형 솔리드의 고정된 개수를 투입하여 간단한 MBB-보의 위상최적 설계를 수행하였다.
본 연구에서는 위상최적화 알고리즘의 수렴성을 개선하기 위해 설계영역에 초기 구멍을 도입하는 방법을 제시하는데, 이것은 경계면에 기초한 최적화 방법의 느린 수렴성을 완화하기 위해, Eschenauer et al.에 의해 고안된 버블 방법의 설계영역 안에 구멍을 도입하는 개념과 연계된다. 버블 방법과 달리, 제안된 방법에서는 최적화 과정동안 구멍의 위치를 정의하는 특성함수를 이용하지 않고, 최적화 초기화 단계에서만 초기 구멍을 도입하는데, 이러한 초기 설계영역 안의 솔리드와 보이드 영역들은 고정되는 것이 아니라 합쳐지거나 쪼개지면서 변화된다. 따라서 위상최적화 알고리즘에서 구멍의 이동에 관련된 복잡한 수치적인 계산 없이 자동적으로 설계변수의 유한변화를 더욱 강화시키기 때문에 목적함수 값의 수렴성을 개선할 수 있다. 본 논문에서는 다양한 치수와 형상의 구멍을 포함하는 초기 설계영역을 가지는 Michell형 보의 위상 최적설계를 밀도분포법으로 불리는 SIMP를 이용하여 수행하였다. 이를 통해 위상최적화의 수렴성을 개선하고 최적위상과 형상에 영향을 미치는 초기 구멍의 효과를 검증하였다.
기능 경사 복합재에서는 열적 탄성 거동이 성분의 구성분포에 의해 명백하게 구분되어지도록 두가지의 성분입자들을 특정한 체적분율 분포에 따라서 혼합한다. 따라서, 설계자는 주어진 제약조건에 대해 목적하는 성능에 적합한 기능 경사 복합재를 설계하기 위해서 최적의 체적분율 분포를 결정해야만 한다. 본 연구에서는 금속과 세라믹으로 구성된 내열 기능 경사 복합재의 2차원 체적분율을 최적화하기 위하여 내부벌칙함수법과 유한차분법을 사용한 수치 최적화기법을 제안하였다. 최적화 효율을 위해 단일 설계변수의 유한개의 균질 사각형 격자로 기능 경사 복합재의 영역을 나누었다. 그렇지만, 연속적인 체적분율을 구현하기 위하여 최적설계 후에 전체적으로 연속적인 이차원 선형함수로써 불연속적인 체적분율을 보간하였다.
본 연구에서는 기지개와 미시구멍으로 구성된 복합재료에 입자보강 복합재료의 등가 재료상수 예측기법인 평균장 근사이론과 등가원리를 적용하여 위상 최적화에 필요한 등가 재료상수와 설계변수와의 상관관계식을 유도하였다. 또한, 유도된 관계식에 중간값을 갖는 설계변수의 수를 줄이기 위하여 벌칙인자를 도입하였다. 그리고 본 연구의 타당성을 검증하기 위하여 벌칙인자가 도입된 위상 최적화문제를 순차이차계획법인 PLBA 알고리즘을 이용하여 해석하였다.
This paper studies about the buckling analysis of multi-material structure especially compressed column using topology optimization. The buckling is stated as a constraint in the optimization problem. A clamped-pinned column with applied axial compressive load is analyzed. An active-phase algorithm is used to solve multi-phase topology optimization problem. The distribution of different materials is determined in a isotropic two-dimensional design domain. The material properties is modified based on the Solid Isotropic Material with Penalization (SIMP) interpolation approach. The Method of Moving Asymptotes (MMA) is used to update the topology design variables which is relative element densities. The optimal designs of the column structure are presented and discused in the numerical applications.
The goal of this study is to investigate the effectiveness of the use of multi constructional material in unit module plate of steel grid structure and provide engineers and designers an appropriate view point of multi-material topology optimization when making decision and information in design. The material distribution is implemented with the use of 3 materials in a given plate under prescribed loading and boundary conditions. Topology changes through automatic distribution of multi materials are presented during optimization procedures showing that there could be selective structural design possibility when using multi materials. The cross sections, stiffness and cost of material combination are useful information for engineers and designers in making design decision.
The goal of this study is to evaluate the effectiveness of using more than one material for unit element flange of Archigird. The flange is optimized using the solution of multi-material topology optimization. In this topic, multi-material minimum structural compliance topology optimization problems is solved basedon the classical optimality criteria method. Three different types of steel material are used: SS400, SM570, UL700. The distribution of these three materials is considered by changing the participating volume of materials in the given shape. Material distribution is implemented with the use of 2 materials and 3 materials. The strain energy and the price of three steel types are used for comparison.