본 논문은 호안용 매트리스내 채움재의 한계_허용 전단응력을 제시하였다. 먼저, 매트리스가 설치된 수로에서 유수력이 작용할 때 각 지점에 대한 유효전단응력을 산정하였다. 다음으로, 입자들의 한계운동을 결정하는데 주로 사용되는 Shields 계수와 전단응력을 이용한 채움재의 평균입경을 산정하였다. 마지막으로, 산정된 각 인자들을 근거로 철망내 개별 암석의 안정조건을 만족시키는 한계_허용 전단응력의 범위를 결정하였다. 또한 매트리스와 사석의 비교를 통해 매트
Revetment Mattress/Filter is the porous structure filled fillers in meshed structure so that it can use the fillers of various sizes and form various pores. The porous structure of the Mattress/Filter increases drainage so that it decreases the energy and velocity of flow therefore the tractive force is decreased and the erosion of revetment is mitigated. The filler of Mattress/Filter uses gravels, waste concretes and slags so that the surface is rough and the roughness coefficient increases and the increase of the roughness coefficient decreases flow velocity and tractive force.
On the other hand Mattress/Filter and vegetation are combined so that the increase of roughness coefficient and flow velocity still more progress therefore the effect of decrease of tractive force is increased after a few months have passed since the Mattress/Filter is constructed so that the vegetation is developed and be stabilized. The vegetation channel of Mattress/Filter is set up and the inspection comes into operation by varing flowrate and vegetation spacing to examine these characters of the Mattress/Filter. The coefficent of flow velocity U/U*' is decreased exponentially as vegetation desity aH' or λ is increased and the coefficient of friction f is increased as vegetation desity aH' is increased but decreased as the coefficent of flow velocity U/U*' is increased. The effective tractive force F0 is decreased exponentially as the vegetation desity aH' is increased.
From the inspection the results are obtained that the porous and vegetation structure of the revetment Mattress/Filter system increases the coefficient of friction of revetment so that flow velocity and effective are decreased therefore greatly contributes the stability of the revetment.