세라믹 분리막은 높은 열적, 화학적 안정성을 갖기 때문에 극한의 조건에서 운전되는 다양한 산업 공정에 적용할 수 있다. 그러나 투과도와 기계적 강도의 trade-off 현상에 의한 세라믹 분리막 활용에 제약이 있어, 고투과성-고강도 분리막 의 개발이 필요하다. 본 연구에서는 상전이-압출법으로 알루미나 중공사 분리막을 제조하고, 고분자 바인더의 종류와 그 혼합 비에 따른 분리막의 특성 변화를 관찰하였다. 용매인 DMAc (Dimethylacetamide)와 고분자 바인더의 한센 용해도 인자를 비 교하면, PSf (polysulfone)가 DMAc와 높은 용해도 특성을 갖기 때문에 도프 용액의 점도와 토출압력이 높게 나타나 분리막 내부가 치밀한 구조로 형성되기 때문에 높은 기계적 강도를 갖으나 수투과도가 감소하는 것으로 확인되었다. 그에 반해, PES (polyethersulfone)를 이용하여 분리막을 제조하면 기계적 강도가 다소 감소하고 수투과도가 증가하는 것으로 나타났다. 따라 서 분리막 성능과 물성을 최적화하기 위해 PSf와 PES를 혼합하여 분리막을 제조하였으며, 9:1로 혼합하여 제조된 분리막에 서 최적화된 수투과도와 기계적 강도를 얻을 수 있었다.
본 연구에서는 현탁중합을 통해 이온교환입자를 합성하였다. 또한 음이온 교환막을 제조하기 위해 brominated poly(phenylene oxide) (Br-PPO)로 교환막 합성을 진행하였으며, 합성한 이온교환입자를 Br-PPO에 첨가하여 음이온 교환막 에 성능을 향상시키고자 하였고, 이를 적용하여 음이온 교환막 연료전지 시스템의 성능 평가를 진행했다. 이온교환입자는 FT-IR, TGA 및 UTM을 통해 구조 분석, 열적 기계적 특성을 평가하였다. Br-PPO는 NMR을 통해 화학적 구조 분석 및 합성 여부를 확인하였고, 음이온 교환막 연료 전지 셀 테스트를 진행하기 전 이온전도도와 이온교환용량, 팽윤도 및 수분함수율을 측정해 연구되고 있는 다른 음이온 교환막들과 비교를 통해 성능을 평가했다. 최종적으로 가장 성능이 우수했던 이온교환입 자를 0.7 wt%를 첨가한 Br-PPO-TMA- SDV 음이온 교환막을 연료전지 시스템에 도입하여 상용 막인 FAA-3-50과 성능을 비 교했다.