검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        At Nuclear Power Plant (NPP), aging management is performed as part of the Periodic Safety Review (PSR) in accordance with the Nuclear Safety Act. The purpose of the aging management program (AMP) is to manage the integrity of structures, systems and components (SSCs) in NPPs over time and use. Through this, aging deterioration is mitigated to increase equipment life and secure long-term operation safety. Fuel Oil Chemistry is one of the AMPs. Through this program, aging management is performed for storage tanks, piping and other metal components that contact with diesel fuel oil. The program is focused on managing loss of material due to general, pitting, crevice, and microbiologically-influenced corrosion (MIC) and fouling that leads to corrosion of the diesel fuel tank internal surfaces. The fuel oil aging management method currently applied to NPPs in Korea measures the concentration of water and particulate contamination in the oil, analyzed the trend, and periodically cleans and inspect the inside of tanks. Among them, in monitoring MIC, a direct analysis and monitoring of the amount of microorganisms may be more effective. In this study, a method for improving the MIC monitoring system for diesel fuel oil systems was reviewed by reviewing reference documents including NUREG 1801 and examining the methods actually applied in US NPPs.
        2.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/ 16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.
        4,300원