The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.
판형 열교환기의 유로 형상을 모사한 유동장을 대상으로 입자영상유속계를 이용 하여 속도를 계측하였으며, 시계열 속도분포를 고찰하였다. 그 결과 삼각형상 그루브 내의 유동형태는 채널흐름으로부터 전달받은 전단응력이 그루브 내부를 순환하는 회전에너 지로 전환되면서 강제와류와 유사한 달걀형의 일그러진 타원형의 주순환류가 존재하며, 레이놀즈수의 증가에 따라 전단혼합층의 상대적 영향이 감소하였다.
We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observations.
The vertical structure of atmosphere was observed to investigate the variation of surface ozone concentration by vertical downward mixing of residual ozone in the atmospheric boundary layer at the Busan coastal area. Airsonde and pilot balloon measurements were made at Gamcheondong and the Kimhae airport for April 26∼27, 1996. The vertical profile of potential temperature showed a residual layer between 510m and 1800m from 2100LST April 26 to 0900LST April 27.
The downward mixing of ozone in the residual layer of the atmospheric boundary layer was confirmed from vertical profile of mixing ratio near 600m in the morning. The thickness of the sea breeze layer was 900m at 1500LST April 26. Thereafter, it become to be lowered with time. A low level jet was measured near 900m at 0300LST on April 27 from a pibal measurement. Early morning sharp increase of surface ozone concentration at the Busan coastal area was caused by vertical downward mixing of ozone concentration rather than by photochemical reaction in the atmospheric boundary layer.