PURPOSES : This study set out to investigate the fundamental properties of alkali-activated concrete (AAC) using modified slag as the pavement maintenance material.
METHODS: The material properties of modified slag based alkali-activated concrete (MSAAC) were analyzed and evaluated against those of alkali-activated slag concrete (AASC). Several mix formulations were considered, including one MSACC and four AASCs. The main variables considered in the study were slump, air content, compressive strength, rapid chloride permeability test, scaling resistance, freeze-thaw test, XRD, SEM, and EDS.
RESULTS: MSAAC exhibits a compressive strength in excess of 21 MPa six hours after curing. Also, the charge passed of the MSACC was found to be less than 2000 coulombs after seven days and about 1000 coulombs after 28 days. The weight loss determined from a scaling test did not exceed 1 kg/cm2 in the case of the MSACC, but that of the AASCs had already exceeded 1kg/cm2 at the 10th cycle. Based on the results of the freeze-thaw test, the relative dynamic modulus of every mix was found to be in excess of 90%. An energy dispersive spectroscopy(EDS) analysis found that the weight rate percentage of the calcium and aluminum in the MSAAC mix is twice that of the AASC mixes.
CONCLUSIONS : It was found that the MSAAC mix exhibits significantly better performance than AASC mixes, based on various fundamental properties.
In general, polymer cement mortars that is made from organic polymer dispersion and cement have good workability compared with ordinary cement due to ball-bearing acting of polymer particles in cement mortar. The purpose of this study is to evaluate the workability of cement mortar according to adding of admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the flow of polymer-modified mortars is increased with increasing polymer-cement ratio, and also is a little improved according to adding of fly ash compared to blast-furnace slag.
In general, polymer cement mortars that is made from organic polymer dispersion and cement have good workability compared with ordinary cement due to ball-bearing acting of polymer particles in cement mortar. The purpose of this study is to evaluate the workability of cement mortar according to adding of admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the flow of polymer-modified mortars is increased with increasing polymer-cement ratio, and also is a little improved according to adding of fly ash compared to blast-furnace slag.