This study is to explore the effect of music characteristics (i.e., likeliness and familiarity of music) on the relationship between mood and attitude toward the product in the online shopping mall selling hand-made shoes. A total of 319 consumers participated in experiments with online shopping mall stimuli with a variety of background music. In results, consumer mood positively affected attitude toward the hand-made shoe products in the online shopping mall under background music. A moderating effect of music likeliness was found in the relationship between mood and product attitude, indicating that mood more strongly affected product attitude under more liked music than under less liked music. When consumers are listening to more liked music and are in good mood, they may build their attitudes toward products independently from their mood, whereas they may build positive attitude under good mood versus negative attitudes under bad mood if they are listening to less liked music. A moderating effect of music familiarity was not found in the relationship between mood and product attitude. Based on results, it was confirmed that the S-O-R model could be applied to explain the effect of background music on consumer responses in online shopping malls. Marketers may be able to select and adjust the likeliness and familiarity of background music to better serve consumers in diverse shopping conditions, referring to the study findings.
폭소노미 (foxonomy) 분위기 태그를 이용한 음악 검색 시 내부적으로 단어 태그 대신에 수치 태그 (AV 태그: Arousal과 Valence 값으로 이루어진 태그)를 이용하면 폭소노미의 문제점 중의 하나인 유사어 문제점을 일부 해결할 수 있다. 하지만 이를 위해서는 두 가지 선행 작업이 제대로 이루어져야 하는데, 그 첫 번째가 단어 태그를 수치 태그로 변환하는 작업이며 그 두 번째가 검색 대상인 음악을 수치 태그로 표현하는 작업이다. 첫 번째 작업에 대해서는 이전 연구를 통하여 그 유의성을 보였기 때문에 본 논문에서는 두 번째 작업에 대해서 그 유의성을 밝히고자 하였다. 이를 위하여 본 논문에서는 음악과 AV값 간의 관계를 정의하는 음악-분위기 매핑테이블을 제안하고, ANOVA 검증을 이용하여 분석 하였다. 실험 결과, 동의어 포함 유무에 무관하게 음악 구간의 A값과 V값 모두 12개 음악의 분위기에 대하여 분포차가 발생하고, 모두 제 1종 오류확률 P<0.001를 만족하였다. 결론적으로 음악의 분위기에 따라 AV 값 분포가 다르다는 것을 확인할 수 있었다.
폭소노미는 폭소노미에 사용되는 태그에 대하여 유사어, 태깅 레벨, 신조어등의 문제점들이 있다. 본 연구자들은 이러한 문제점들을 해결하기 위해 음악의 분위기 강도(Arousal과 Valence의 강도)를 음악의 내부 태그로 활용하는 방법을 사용하고자 한다. 즉, A(Arousal)값과 V(Valence)값을 이용하여 음악의 분위기를 수치적으로 표현하고, 분위기 태그도 AV값으로 대응시켜 검색하게 되면 태그가 일치하지 않더라도 유사한 AV 값을 갖는 음악이 검색되어 결과적으로 분위기가 유사한 음악들을 검색할 수 있게 된다. 본 논문에서는 이의 선행연구로 AV값과 폭소노미 태그와의 관계를 정의하는 매핑테이블을 제안하고, 태그와 AV값의 연관 관계를 분석하기 위해 유명한 음악 검색 사이트인 last.fm에서 수집한 테스트 데이터에 대해 ANOVA 검증을 하였다. 검증결과, A값과 V값에 모두에 대하여 제 1종 오류확률 P가 0.0으로 귀무가설을 기각하고 대립가설을 채택할 수 있었다. 결론적으로 폭소노미 태그에 따라 AV 값 분포가 다르다는 것을 검증 할 수 있었다.
스트레스는 다양한 질병의 원인이 되며 스트레스의 해소는 질병 예방에 중요한 요인이라 할 수 있을 것이다. 스트레스를 해소시키는 방법 중 한 가지는 청각이나 시각을 이용하는 것으로 스트레스 해소에 맞는 음악을 제공하거나 조명을 제공해 주면 될 것이다. 또한 청각과 시각을 동시에 이용할 수 있다면 그 효과를 극대화 할 수 있을 것이다. 이러한 맥락에서 본 논문에서는 음원의 분위기와 분위기 단어의 색상을 수집한 후 수집한 데이터를 이용하여 음악 장르에 따른 분위기 분포와 분위기 단어에 따른 색상분포를 분석하였고, 두 가지 수집된 데이터를 이용하여 음악 장르에 따른 색상 분포가 다르다는 것을 확인하기 위해 Minitab을 이용하여 2-test를 실시하였다. 분석결과, P〈0.001로 음악 장르에 따라 분위기 색상이 다르게 분포되며 분위기에 따라 색상 및 명도, 채도의 분포도 다르게 나타남을 확인하였다. 이 결과를 음악 분위기에 따라 감성을 표현하는 조명 개발에 활용할 수 있을 것이고, 이를 심리 치료에 적용할 수 있을 것으로 기대된다. 다만, 심리 치료의 경우 임상 실험인 점을 고려한다면 더 많은 데이터의 수집과 분석이 필요할 것이다.