In this study, simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were utilized to differentiate the carbon nanoribbons (CNRs) and carbon nanobelts (CNBs) with different edges. CNRs, characterized by linear, extended π-conjugated systems, and CNBs, featuring closed-loop, cyclic structures, exhibit distinct bandgaps influenced by edge configuration and molecular structure. CNBs generally possess smaller bandgaps than GNRs due to enhanced π-conjugation and electron delocalization in their curved structures. Specifically, the bandgaps of zigzag-edged GNRs and CNBs are smaller than those of their armchair-edged counterparts. These differences in electronic states cause shifts in the position of the C1s XPS peaks. ANR and ANB exhibit lower binding energies (BEs) compared to ZNR and ZNB. The peak position differences, which are 1.3 eV between ZNR and ANR and 0.5 eV between ZNB and ANB, highlight how edge configuration can differentiate structures within the same ribbon or belt type. While ZNR and ZNB have nearly identical peak positions, rendering them hard to distinguish, the 0.9 eV difference between ANR and ANB allows for clear differentiation. In ZNR and ZNB, strong bands from C–H bending and C–C stretching were observed, with slight differences in band positions allowing for structural differentiation. In ANR and ANB, the Kekulé vibration band was most intense, appearing at lower wavenumbers in ANB. Additionally, ANB showed unique C–C stretching bands at 1483 and 1581 cm− 1, which were barely observed in ANR. This study lays the groundwork for future spectroscopic analysis of GNRs and CNBs.
Transition metal oxide-based materials have mainly been studied as electrodes for energy storage devices designed to meet essential energy demands. Among transition metal oxide-based materials, hydrated vanadium pentoxide (V2O5 ‧ nH2O), a vanadium oxide material, has demonstrated great electrochemical performance in the electrodes of energy storage devices. Graphene oxide (GO), a carbon-based material with high surface area and high electrical conductivity, has been added to V2O5 ‧ nH2O to compensate for its low electrical conductivity and structural instability. Here, V2O5 ‧ nH2O/GO nanobelts are manufactured with water without adding acid to ensure that the GO is uniformly dispersed, using a microwave-assisted hydrothermal synthesis. The resulting V2O5 ‧ nH2O/GO nanobelts exhibited a high specific capacitance of 206 F/g and more stable cycling performance than V2O5 ‧ nH2O without GO. The drying conditions of the carbon paper electrodes also resulted in more stable cycling performance when conducted at high vacuum and high temperature, compared with low vacuum and room temperature conditions. The improvement in electrochemical performance due to the addition of GO and the drying conditions of carbon paper electrodes indicate their great potential value as electrodes in energy storage devices.