검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nonporous materials have nano-sized pores. High specific surface area and size and shape selectivity (size and shape Selectivity) are the most important features of these materials that have led to their widespread use in various industries, such as catalysts, water treatment and separation of pollutants. The development of properties and applications of these materials depends on the fabrication of nanoporous materials with optimal and controlled structures. In this paper, porous nanostructures and supermolecular chemistry are introduced in detail. Then, a number of common nanoporous materials, such as activated carbon, metal–organic frameworks and zeolites, then various types of mineral and organic nanoporous materials as well as methods of synthesis, characterization and applications of these materials will be studied in detail.
        6,300원
        3.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        With the matters of climate change, energy security and resource depletion, a growing pressure exists to search for replacements for fossil fuels. Among various sustainable energy sources, hydrogen is thought of as a clean energy, and thus efficient hydrogen storage is a major issue. In order to realize efficient and safe hydrogen storage, various porous materials are being explored as solid-states materials for hydrogen storage. For those purposes, it is a prerequisite to characterize a material’s textural properties to evaluate its hydrogen storage performance. In general, the textural properties of porous materials are analyzed by the Brunauer-Emmett-Teller (BET) measurement using nitrogen gas as a probe molecule. However, nitrogen BET analysis is sometimes not suitable for materials possessing small pores and surfaces with high curvatures like MOFs because the nitrogen molecule may sometimes be too large to reach the entire porous framework, resulting in an erroneous value. Hence, a smaller probe molecule for BET measurements (such as hydrogen) may be required. In this study, we describe a cost-effective novel cryostat for BET measurement that can reach temperatures below the liquefaction of hydrogen gas. Temperature and cold volume of the cryostat are corrected, and all measurements are validated using a commercial device. In this way, direct observation of the hydrogen adsorption properties is possible, which can translate directly into the determination of textural properties.
        4,000원
        4.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Global warming is considered one of the great challenges of the twenty-first century. In order to reduce the ever-increasing amount of methane (CH4) released into the atmosphere, and thus its impact on global climate change, CH4 storage technologies are attracting significant research interest. CH4 storage processes are attracting technological interest, and methane is being applied as an alternative fuel for vehicles. CH4 storage involves many technologies, among which, adsorption processes such as processes using porous adsorbents are regarded as an important green and economic technology. It is very important to develop highly efficient adsorbents to realize techno-economic systems for CH4 adsorption and storage. In this review, we summarize the nanomaterials being used for CH4 adsorption, which are divided into non-carbonaceous (e.g., zeolites, metal-organic frameworks, and porous polymers) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, and activated carbon fibers), with a focus on recent research.
        4,200원