As a basic study for the removal of oxygen in solid Nd metal by metal Ca vapour, by using the thermodynamic data such as ΔG-T diagrams and Nd-O and Nd-Ca equilibrium diagrams, the amount of residual oxygen in solid Nd metal formed based on deoxidation reaction by Ca vapour, instead of by direct contact of solid Nd metal and Ca solution, was determined. Deoxidation experiments were carried out for solid Nd metal in a temperature range of 890~970 ℃ for 1h to 4h and content of addition Ca of 0.6~1.8 g (5~15 wt% of solid Nd metal). As a result, it was found that as deoxidation temperature increased, dissolved oxygen decreased. Especially, it was observed that a small amount of Nd-Ca alloy liquid was formed on the surface of the solid Nd metal sample deoxidized at 970 ℃ for approximately 1 hour. Also, it was found that if the content of addition Ca was 1.8 g (15 wt% of solid Nd metal) the amount of produced Nd-Ca alloy increased slightly. However, for the Nd sample with which the deoxidation reaction was performed at 930 ℃ for 4h with content of addition of Ca of 1.5 g (13 wt% of Nd metal), the residual oxygen was found to decreased to 12.00 ppm.
Neodymium(Dysprosium)-permanent magnets (Nd(Dy)-Fe-B Magnets) have necessity and potential to be recycled given their high criticality and important roles in various high-tech fields as well as the characteristics of being selectively disengaged from the assemblies in which they are used. This study focused on secondary material flow (downstream) of Nd(Dy)-Fe-B Magnets in South Korea. The quantitative information includes the primary data of each category (Emission - Collection - Disengagement - Resource Recovery - Remanufacturing) with domestic recycling situations of the magnets, which can contribute to more effective policy-making. As a result of the material flow analysis, this study provides the primary data of Nd and Dy at each stage and inhibiting factors (bottleneck) of Nd-Fe-B Magnets recycling and suggests the method for improvement of recycling of rare earth magnet.