This paper presents using Newton-Raphson method calibration for planar cable robot. In cable robot there are three big error issue which are geometric error and and modeling error and non-geometric error, in this paper we just focus on first two issue. Using MATLAB simulation we found minimum of 8 pose we have to use in calibration equation and the initial vale can decrease of the iteration.
본 논문에서는 물성이 균일하지 않은 반무한 고체영역의 탄성파속도 분포를 재구성하기 위한 시간영역 Gauss-Newton 전체파형 역해석 기법을 소개한다. 반무한 영역을 유한 계산영역으로 치환하기 위하여 유한영역의 경계에 수치적 파동흡수 경계조건인 perfectly-matched-layers(PMLs)를 도입하였다. 이 역해석 문제는 PML을 경계로 하는 영역에서의 탄성파동방정식을 구속조건으로 하는 최적화 문제로 성립되며, 표면에서 측정된 변위응답과 혼합유한요소법에 의해 계산된 응답간의 차이를 최소화함으로써 미지의 탄성파속도 분포를 결정한다. 이 과정에서 Gauss-Newton-Krylov 최적화 알고리즘과 정규화기법을 사용하여 탄성파속도의 분포를 반복적으로 업데이트하였다. 1차원 수치예제들을 통해 Gauss-Newton 역해석으로 부터 재구성된 탄성파속도의 분포가 목표값에 충분히 근사함을 보였으며, Fletcher Reeves 최적화 알고리즘을 사용한 기존의 역해석 결과에 비해 수렴율이 현저히 개선되고 계산 소요시간이 단축됨을 확인할 수 있었다.
저자는 기존의 연구에서 대용량-비선형성을 가지는 유체의 최적화를 수행하기 위해 몇 가지 강력한 방법들을 제시한 바 있다. 즉, 최적화 과정에서 수렴성을 높이기 위해 step by step기법을 사용하였고, 또한 수렴속도를 높이기 위하여 최적화이터레이션 과정에서 얻어지는 민감도정보를 이용하여 시스템 평형방정식의 해석을 위한 좋은 초기치를 제공하는 방법과, 평형방정식을 구속조건으로 사용하는 동시기법(simultaneous technique)에서 착안하여 해석과 최적화 수렴 판정치를 조작하는 방법을 제시한 바 있다. 그러나 그들 기법은 기본적으로 유사뉴턴법에 기본을 두고 있다. 현재까지 최적화에서 SQP기법을 사용할 때는 정확한 헤시안 매트릭스의 유도가 매우 까다롭고 힘들기 때문에 유사뉴턴법을 사용하고 있는 실정이다. 그러나 3차원 문제와 같이 더욱 큰 용량의 문제를 위해서는 진정한 의미에서의 뉴턴법, 트루 뉴턴법(true Newton method)을 사용할 필요가 있다. 본 연구에서는 트루 뉴턴법을 사용하기 위해 헤시안 매트릭스의 정확치를 얻는 과정을 유도하고 이를 기본으로 트루 뉴턴법을 이용한 최적화 루틴을 만들었다. 그리고 이를 3차원 문제에 적용하여 그 효과를 검증하였다.