This study aimed to evaluate the efficiency of combining acidification with adsorbents (zeolite and biochar) to mitigate the environmental impacts of pig slurry, focusing on ammonia (NH3) emission and nitrate (NO3 -) leaching. The four treatments were applied: 1) pig slurry (PS) alone as a control, 2) acidified PS (AP), 3) acidified pig slurry with zeolite (APZ), and 4) acidified pig slurry with biochar (APB). The AP mitigates NH3 emission and NO3 - leaching compared to PS alone. Acidification reduced the cumulative NH3 emission and its emission factor by 35.9% and 12.5%, respectively. The APZ and APB increased NH4 +-N concentration, with the highest level in APB, compared to AP. The NH4 + adsorption capacity of APB (0.90 mg g-1) was higher than that of APZ (0.63 mg g-1). The APB and APZ treatments induced less NH3 emission compared to AP. The cumulative NH3 emission was reduced by 12.2% and 27.6% in APZ and APB, respectively, compared to AP treatment. NO3 - leaching began to appear on days 12 and 13, and its peak reached on days 16 and 17, which were later than AP. The cumulative NO3 - leaching decreased by 17.7% and 25.0% in APZ and APB, respectively, compared to AP treatment. These results suggest that combining biochar or zeolite with acidified pig slurry is an effective method to mitigate NH3 emission and NO3 - leaching, with biochar being particularly effective.
This study was conducted to figure out the productivity of Italian ryegrass(IRG) and leaching water characteristics based on horse manure compost level in Jeju. This study was conducted for about six months. Six treatments were established : non-fertilizer(NF), chemical fertilizer 100%(CF), horse manure compost 50% and chemical fertilizer 50% combination(Combination), horse manure compost with 50% of nitrogen (50%), 100% of nitrogen(100%), 150% of nitrogen(150%). The highest amount of dry matter yield of IRG was revealed in CF(11,965± 564 kg/ha), and both 150% and Combination were second(p<0.05). Nitrate leaching tended to increase until the third analysis and then decreased. There were not significantly differences among mean nitrate concentrations. The findings of the study suggest that horse manure compost with 50% of nitrogen be applied for IRG as basal fertilization and then 50% of chemical fertilizer be applied as top fertilization.
This study was conducted to evaluate the effect of slow release fertilizers (SRF), crotonylidene diurea (CDU) and latex coated urea (LCU), on nitrogen (N) use efficiency (NUE) and nitrate-N leaching in a silty clay loam soil under polyethylene film mulching (PFM) for sesame cultivation. In PFM plot, concentrations of NO3-N and NH4-N in SRF applied soils were less than that in the urea plot during the whole growing period. However, NO3-N and NH4-N in all the non-mulched plots (NM) were not significantly different. Urea-N in soil treated with SRF was higher than urea plot until 50 days after application and was comparable in all the treatments after 50 days. NO3-N concentrations in leached solution in 21 days after urea fertilization in PFM and NM were 26 mg L-1 and 83 mg L-1 , respectively. However, NO3-N in leached solution at applied CDU and LCU was less than that of urea similar to nitrate concentration in soil. NO3-N in leached solution in applied CDU and LCU in 44 days after application was about 25% lower than that urea plot and PFM, while the NO3-N concentration of CDU and LCU treatment in NM did not changed. Application of SRF increased the yield of sesame and N recovery compared to urea and there was a little difference between SRF and N levels. In conclusion, application of 80% N level with SRF increased N recovery and reduced nitrate leaching without reduction of yields compared with urea application.