검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g−1 at 1 A g−1, a rate capability of 73.2 % at 10 A g−1, and an outstanding cycling ability of 97.85% after 10,000 cycles at 10 A g−1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.
        4,000원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, nitrogen (N)-doped ultra-porous carbon derived from lignin is synthesized through hydrothermal carbonization, KOH activation, and post-doping process for CO2 adsorption. The specific surface areas of obtained N-doped porous carbons range from 247 to 3064 m2/g due to a successful KOH activation. N-containing groups of 0.62–1.17 wt% including pyridinic N, pyridone N, pyridine-N-oxide are found on the surface of porous carbon. N-doped porous carbon achieves the maximum CO2 adsorption capacity of 13.6 mmol/g at 25 °C up to 10 atm and high stability over 10 adsorption/desorption cycles. As confirmed by enthalpy calculation with the Clausius–Clapeyron equation, an adsorption heat of N-doped porous carbon is higher than non-doped porous carbon, indicating a role of N functionalities for enhanced CO2 adsorption capability. The overall results suggest that this carbon has high CO2 capture capacity and can be easily regenerated and reused without any clear loss of CO2 adsorption capacity.
        4,000원
        4.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoridemelamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specificsurface area decreased with an increase in the carbon-ization temperature. However, the maximum specificcapacitance of 208 F/g was obtained at a carbonization temperature of 800°C because it produced the highest microporosity.
        3,000원